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Reinforcement Learning in Modern Scenarios

Atari Game Robotic Recommendation
(Mnih et al., 2015) (Levine et al., 2016) (Zou et al., 2019)

Recommender System

Mnih, V., Kavukcuoglu, K., Silver, D., et al. “Human- Levine, S., Finn, C., Darrell, T., & Abbeel, P. “End-to- fein Zou, '--I’_Xia’ L, D”‘g’ Z., 50"8L:J-: '-i”’W-L’J&Y‘E’ D.
. L, .. . L, t ing t timi -t ti
level controlthrough deep reinforcement learning. End Training of Deep Visuomotor Policies.” Journal of eintorcement Learning to Yptimize -ong-term User Engagement in

] ) Recommender Systems.”
Nature 518, 529-5383, 2015. Machine Learning Research 17(39), 1-40, 2016 In Proceedings of the 25th ACM SIGKDD Conference on Knowledge Discovery

and Data Mining (KDD *19), 28102818, 2019. 2
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Why RL Is Hard to use in Real World
Systems?
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Why RL Is Hard to use in Real World
Systems?
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Why RL Is Hard to use in Real World
Systems?

Use fixed HPC
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RL4Sys: A Lightweight System-Driven RL Framework
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Challenge 1: how to define system friendly interface

System Software RL4Sys Client @00 RL4Sys Server @00
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Challenge 1: how to define system friendly interface

. i

To Address this challenge, we have to know:
1. How does the RL4Sys workflow looks like?
2. How does the Real System integrate RL4Sys?

= A

alale] - [
2 T ——




Background Motivation

Implementation

Challenge 1: how to define system friendly interface

1. RL4Sys only have maximum 5
APls

/ RLAgent = RL4sys.init() \

act, traj = rl4sys.request_action(obs)
traj.add(act)

act.update_reward(value)

System Software

main()

?

Init RL Agent

!

Loop:

Request Action

0

Update Reward

ktraj.mark_end_of_trajectory()/

S

Trajectory End

Evaluation Conclusion

DIRLAB




Background Motivation Implementation Evaluation Conclusion @

Challenge 1: how to define system friendly interface

. System Software
1. RL4Sys only have maximum 5

APls main()
| RLAgent = RL4sys.init() | Init RL Agent
Loop:

act, traj = . tion(obs
, traj rl4sy§ request_ac (obs) Request Action
traj.add(act) .

act.update_reward(value) Update Reward
traj.mark_end_of_trajectory() Trajectory End
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Challenge 1: how to define system friendly interface

. System Software
1. RL4Sys only have maximum 5

RLAgent = RL4sys.init() Init RL Agent
Loop:

Request Action

act, traj = rl4sys.request_action(obs)
traj.add(act)

act.update_reward(value) Update Reward
traj.mark_end_of_trajectory() Trajectory End
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Challenge 1: how to define system friendly interface

. System Software
1. RL4Sys only have maximum 5

RLAgent = RL4sys.init() Init RL Agent
Loop:

act, traj = . tion(obs
, traj rl4sy§ request_ac (obs) Request Action
traj.add(act) .

[act.update_rewa rd(value)] Update Reward
traj.mark_end_of_trajectory() Trajectory End
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Challenge 1: how to define system friendly interface

. System Software
1. RL4Sys only have maximum 5

RLAgent = RL4sys.init() Init RL Agent
Loop:

act, traj = . tion(obs
, traj rl4sy§ request_ac (obs) Request Action
traj.add(act) .

act.update_reward(value) Update Reward
[traj.mark_end_of_trajectory() ] Trajectory End
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Challenge 1: how to define system friendly interface

System Software .
1. Always retrieve best policy from RL4Sys Client @00
Server main()
g A
RLAgent = RL4sys.init() Init RL Agent
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Challenge 1: how to define system friendly interface

RL4Sys Client

@00

2. System call Agent for dominant
control
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Challenge 1: how to define system friendly interface

System Software .
{ 3. Delay reward updating strategy ] RL4Sys Client @00
best fit for system main()
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Challenge 1: how to define system friendly interface

System Software
4. Send Trajectory to server at the RL4Sys Client @00
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Challenge 2: Prevent System Stalling & Overhead
System Software RL4Sys Client @00 RL4Sys Server @00
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Challenge 2: Prevent System Stalling & Overhead

To Address this challenge, we have to know:

1.
2.
3.

OW C
OW C

OW C

oes R
oes R
oes R

| 4Sys minimize system latency?
| 4Sys minimize communication latency?

| 4Sys minimize training latency?

B = A4
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20



Background Motivation Implementation Evaluation Conclusion @

DIRLAB
Challenge 2: Prevent System Stalling & Overhead
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Challenge 2: Prevent System Stalling & Overhead
2. RL4Sys do All Data & policy model is
Asynchronous with marked with version
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Challenge 2: Prevent System Stalling & Overhead

2. RL4Sys do RL4Sys can decide using
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Challenge 2: Prevent System Stalling & Overhead

Trajectory End

g_ oooooo @_
= if len(traj) >= SF
:/ then Send

Server Buffer

Sending condition depend 3. RL4Sys use gRPC &

on a parameter called

send frequency (SF) tunable RPC parameters
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Challenge 2: Prevent System Stalling & Overhead

System Software

main()
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Init RLlAgent 4. RL4Sys use Multi Agent
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Challenge 2: Prevent System Stalling & Overhead
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Pre-load, swap reference

5. RL4Sys update policy with
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Evaluation of RL4Sys

« We use Real world use case examples as evidence of
RL4Sys’ correctness and performance and the
feasibility on other System scenarios.

« High throughput
. gtllgboverhead than baseline, 2.2x speedup than the SOTA solution,
|

* Low resource consumption
. EEIL_JbUsage/Core: 39%b0 overhead than baseline, 5x optimized than
|
« Memory Usage: 3-7% overhead than baseline compare with 20%
overhead for RLIib
2 T ——
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Evaluation — Job Scheduling (Setup & Baselines)

 We evaluate on two HPC scheduling workloads: either from a real
cluster SDSC SP2 or a synthesized trace Lublin256.

4 Baselines:

« Random Scheduling: scheduler with random actions. Simulate normal
Scheduler behavior.

« Static NN Policy: A policy network integrated in scheduler without RL update.
Simulate necessary latency using RL

« Conventional RLIlib: An RL-based Scheduler using RLIib (Ray’s framework) in
both local and remote modes.
« Local RLIib: same client-server architecture as RL4Sys

« Remote RLIib: Both policy and trainer is on server; Client must use heavy communication
and may block when fetching actions.

28




Background Motivation Implementation Evaluation Conclusion @

Evaluation — Job Scheduling (Throughput)

 Higher Throughput: RL4Sys achieves up to ~2.2%x the throughput of the RLIib-based schedulers
« The total runtime overhead stays under 6% compare with Static NN Policy

End to End Runtime Performance Comparison
(Steps per Second)
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Evaluation — Job Scheduling (Throughput)

 Higher Throughput: RL4Sys achieves up to ~2.2x the throughput of the RLIib-based schedulers
« The total runtime overhead stays under 6% compare with Static NN Policy
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Evaluation — Job Scheduling (Resource)

« RL4Sys CPU usage is around 3.2-3.3% usage per core which is very close to Random/Static
NN policy and about 5 lower than RLIib Local’s 16.5%

« RL4Sys RAM usage 2-7% above the baseline (depend on send frequency) Whereas RLIib usage
20+9%0 higher memory consumption for Local mode.

CPU Usage per Core Comparison Memory Usage Comparison (First 20 s)
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Evaluation — Job Scheduling (Resource)

« RL4Sys CPU usage is around 3.2-3.3% per core which is very close to Random/Infer-Only and
about 5x lower than RLIib Local’s 16.5%

« RL4Sys RAM usage 2-7% above the baseline (depend on send frequency) Whereas RLIib usage
20+9% higher memory consumption for RLIib Local.
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Evaluation — Job Scheduling (Correctness)

We use RL4Sys in Job Scheduler on SDSC SP2 and Lublin256.
The reward curve is compared with the baseline solution proposed in Zhanget al., 2020
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Zhang, D., Dai, D., He, Y., Bao, F. S., & Xie, B. (2020). RLScheduler: an automated HPC batch job scheduler using reinforcement
learning. In SC20: International Conference for High Performance Computing, Networking, Storage and Analysis (pp. 1-15). IEEE.
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Evaluation — Lustre Optimization (Correctness)

- Parameters Tuned: We select )
max payload size per RPC, ' [ ‘ |
and max parallel RPC number

e)

—30000 +

Reward (Valu

- Baselines: We compare default
tuning with 2 on each
parameters against RL4Sys
dynamic tuning.

—— Baseline
—60000 1 —— RL4Sys

0 100 200 300 400 500
Step
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Conclusion

« We presented RL4Sys, an easy and
practical RL framework for real system.

« Our design exceed state-of-the-art RLIib
frameworks performance on System
Driven Paradigm.

 We proved RL4Sys delivered a correct
output with a large performance gains

with two examples https://github.com/DIR-
LAB/RL4Sys.git
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