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To Address this challenge, we have to know:
1. How does the RL4Sys workflow looks like?
2. How does the Real System integrate RL4Sys?
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To Address this challenge, we have to know:
1. How does RL4Sys minimize system latency?
2. How does RL4Sys minimize communication latency?
3. How does RL4Sys minimize training latency?
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• We use Real world use case examples as evidence of 
RL4Sys’ correctness and performance and the 
feasibility on other System scenarios.

• High throughput
• 6% overhead than baseline, 2.2x speedup than the SOTA solution, 

RLlib

• Low resource consumption
• CPU Usage/Core: 3% overhead than baseline, 5x optimized than 

RLlib
• Memory Usage: 3-7% overhead than baseline compare with 20% 

overhead for RLlib

Background Motivation Implementation Evaluation Conclusion
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• We evaluate on two HPC scheduling workloads: either from a real 
cluster SDSC SP2 or a synthesized trace Lublin256. 

4 Baselines:

• Random Scheduling: scheduler with random actions. Simulate normal 
Scheduler behavior.

• Static NN Policy: A policy network integrated in scheduler without RL update. 
Simulate necessary latency using RL

• Conventional RLlib: An RL-based Scheduler using RLlib (Ray’s framework) in 
both local and remote modes.

• Local RLlib: same client-server architecture as RL4Sys 

• Remote RLlib: Both policy and trainer is on server; Client must use heavy communication 
and may block when fetching actions.

Background Motivation Implementation Evaluation Conclusion
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• Higher Throughput: RL4Sys achieves up to ~2.2× the throughput of the RLlib-based schedulers

• The total runtime overhead stays under 6% compare with Static NN Policy

Background Motivation Implementation Evaluation Conclusion
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• RL4Sys CPU usage is around 3.2–3.3% usage per core which is very close to Random/Static 
NN policy and about 5× lower than RLlib Local’s 16.5% 

• RL4Sys RAM usage 2–7% above the baseline (depend on send frequency) Whereas RLlib usage 
20+% higher memory consumption for Local mode.

Background Motivation Implementation Evaluation Conclusion
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• RL4Sys CPU usage is around 3.2–3.3% per core which is very close to Random/Infer-Only and 
about 5× lower than RLlib Local’s 16.5% 

• RL4Sys RAM usage 2–7% above the baseline (depend on send frequency) Whereas RLlib usage 
20+% higher memory consumption for RLlib Local.

Background Motivation Implementation Evaluation Conclusion
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We use RL4Sys in Job Scheduler on SDSC SP2 and Lublin256.
The reward curve is compared with the baseline solution proposed in Zhang et al., 2020

Zhang, D., Dai, D., He, Y., Bao, F. S., & Xie, B. (2020). RLScheduler: an automated HPC batch job scheduler using reinforcement 
learning. In SC20: International Conference for High Performance Computing, Networking, Storage and Analysis (pp. 1–15). IEEE. 
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• Parameters Tuned: We select 
max payload size per RPC, 
and max parallel RPC number 

• Baselines: We compare default 
tuning with 2 on each 
parameters against RL4Sys 
dynamic tuning. 

Background Motivation Implementation Evaluation Conclusion
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• We presented RL4Sys, an easy and 
practical RL framework for real system. 

• Our design exceed state-of-the-art RLlib 
frameworks performance on System 
Driven Paradigm.

• We proved RL4Sys delivered a correct 
output with a large performance gains 
with two examples

Background Motivation Implementation Evaluation Conclusion

https://github.com/DIR-
LAB/RL4Sys.git 

https://github.com/DIR-LAB/RL4Sys.git
https://github.com/DIR-LAB/RL4Sys.git
https://github.com/DIR-LAB/RL4Sys.git


Questions

36


	Slide 1: RL4Sys: A Lightweight System-Driven RL Framework for Drop-in Integration in System Optimization
	Slide 2: Reinforcement Learning in Modern Scenarios
	Slide 3: Reinforcement Learning in System Scenarios
	Slide 4: Why RL Is Hard to use in Real World Systems?
	Slide 5: Why RL Is Hard to use in Real World Systems?
	Slide 6: Why RL Is Hard to use in Real World Systems?
	Slide 7: RL4Sys: A Lightweight System-Driven RL Framework
	Slide 8: Challenge 1: how to define system friendly interface
	Slide 9: Challenge 1: how to define system friendly interface
	Slide 10: Challenge 1: how to define system friendly interface
	Slide 11: Challenge 1: how to define system friendly interface
	Slide 12: Challenge 1: how to define system friendly interface
	Slide 13: Challenge 1: how to define system friendly interface
	Slide 14: Challenge 1: how to define system friendly interface
	Slide 15: Challenge 1: how to define system friendly interface
	Slide 16: Challenge 1: how to define system friendly interface
	Slide 17: Challenge 1: how to define system friendly interface
	Slide 18: Challenge 1: how to define system friendly interface
	Slide 19: Challenge 2: Prevent System Stalling & Overhead
	Slide 20: Challenge 2: Prevent System Stalling & Overhead
	Slide 21: Challenge 2: Prevent System Stalling & Overhead
	Slide 22: Challenge 2: Prevent System Stalling & Overhead
	Slide 23: Challenge 2: Prevent System Stalling & Overhead
	Slide 24: Challenge 2: Prevent System Stalling & Overhead
	Slide 25: Challenge 2: Prevent System Stalling & Overhead
	Slide 26: Challenge 2: Prevent System Stalling & Overhead
	Slide 27: Evaluation of RL4Sys
	Slide 28: Evaluation – Job Scheduling (Setup & Baselines)
	Slide 29: Evaluation – Job Scheduling (Throughput)
	Slide 30: Evaluation – Job Scheduling (Throughput)
	Slide 31: Evaluation – Job Scheduling (Resource)
	Slide 32: Evaluation – Job Scheduling (Resource)
	Slide 33: Evaluation – Job Scheduling (Correctness)
	Slide 34: Evaluation – Lustre Optimization (Correctness)
	Slide 35: Conclusion
	Slide 36: Questions

