1

RL4Sys: A Lightweight System-Driven
RL Framework for Drop-in Integration
in System Optimization

_Jiaxin Dong! Md. Hasanur Rashid! Helen Xu? Dong Dai!
jiddong@udel.edu mrashid@udel.edu hxu615@gatech.edu dai@udel.edu

1 SITYor 2 i
EIAWARE, grggffla
DIRLAB



| Background  Motvation Implementation  Evaluaton  Conclusion
DIRLAB

Reinforcement Learning in Modern Scenarios

Atari Game Robotic Recommendation
(Mnih et al., 2015) (Levine et al., 2016) (Zou et al., 2019)

Recommender System

Mnih, V., Kavukcuoglu, K., Silver, D., et al. “Human- Levine, S., Finn, C., Darrell, T., & Abbeel, P. “End-to- fein Zou, '--I’_Xia’ L, D”‘g’ Z., 50"8L:J-: '-i”’W-L’J&Y‘E’ D.
. L, .. . L, t ing t timi -t ti
level controlthrough deep reinforcement learning. End Training of Deep Visuomotor Policies.” Journal of eintorcement Learning to Yptimize -ong-term User Engagement in

] ) Recommender Systems.”
Nature 518, 529-5383, 2015. Machine Learning Research 17(39), 1-40, 2016 In Proceedings of the 25th ACM SIGKDD Conference on Knowledge Discovery

and Data Mining (KDD *19), 28102818, 2019. 2




Background Motivation Implementation Evaluation Conclusion @

DIRLAB
Reinforcement Learning in System Scenarios

USE
REINFORCEMENT

LEARNING




Background Motivation Implementation Evaluation Conclusion @

_ DIRLAB
Why RL Is Hard to use in Real World
Systems?
’i; RLTFrf;:i:Vrv‘itkS ﬁ raditional Agent-Driven Paradigm o gz;zm

&

N =

| D Job Scheduler
()

Environment

Resume Scheduler

Stable Baseline 3 make act dmj '
OpenAl Receive Obs. & reward ‘ o ‘
Spinning Up S s

Pause Scheduler ‘

> env.step(
0,

)
env.reset()

/




Background Motivation Implementation Evaluation Conclusion @

DIRLAB
Why RL Is Hard to use in Real World
Systems?

[ |
l}l '
" Real job Job Scheduler

f do:

I 7 Scheduler Huge Cost Simulation
end @ »

Int main(): “/ N } env.step()

: .- / A— D env.reset()

X8




Background Motivation Implementation Evaluation Conclusion @

DIRLAB
Why RL Is Hard to use in Real World
Systems?

Use fixed HPC
Agent owns the trace or

control loop synthesized trace

N
(o o o)
/ Resume Scheduler

make act @-’J ﬁ
Receive Obs. & reward H

l< Pause Scheduler

Simulation

' Job Scheduler

Assuming next observation and
rewards are immediately
available after each action

Synchronize/blocking Scheduler
simulation running




Background Motivation Implementation Evaluation Conclusion @

DIRLAB

RL4Sys: A Lightweight System-Driven RL Framework

System Software RL4Sys Client @00 RL4Sys Server @00

main()

g A < % Policy Sender
Init RL Agent / \
Lo{)p: \ —

R- R-
Request Action Obs. —
i - Act. ;‘ 0~ Trajectory
: +Rew !

(5 / Dispatcher
Update Reward T

A

: I ERR) - ERR)

Trajectory End I




Background Motivation Implementation Evaluation Conclusion @

Challenge 1: how to define system friendly interface

System Software RL4Sys Client @00 RL4Sys Server @00

main() X |
g < % Policy Sender
Init RL Agent / \
1 |

Loop:

R-] |-
Requesi Action _%_ —? \ /

_
L Act. l N~ Trajectory
: +Rew !

(5 / Dispatcher
Update Reward T

A

: I ERR) - ERR)

Trajectory End I




Background Motivation Implementation Evaluation Conclusion @

Challenge 1: how to define system friendly interface

. i

To Address this challenge, we have to know:
1. How does the RL4Sys workflow looks like?
2. How does the Real System integrate RL4Sys?

= A

alale] - [
2 T ——




Background Motivation

Implementation

Challenge 1: how to define system friendly interface

1. RL4Sys only have maximum 5
APls

/ RLAgent = RL4sys.init() \

act, traj = rl4sys.request_action(obs)
traj.add(act)

act.update_reward(value)

System Software

main()

?

Init RL Agent

!

Loop:

Request Action

0

Update Reward

ktraj.mark_end_of_trajectory()/

S

Trajectory End

Evaluation Conclusion

DIRLAB




Background Motivation Implementation Evaluation Conclusion @

Challenge 1: how to define system friendly interface

. System Software
1. RL4Sys only have maximum 5

APls main()
| RLAgent = RL4sys.init() | Init RL Agent
Loop:

act, traj = . tion(obs
, traj rl4sy§ request_ac (obs) Request Action
traj.add(act) .

act.update_reward(value) Update Reward
traj.mark_end_of_trajectory() Trajectory End

11




Background Motivation Implementation Evaluation Conclusion @
I [)l[(l_l\f;

Challenge 1: how to define system friendly interface

. System Software
1. RL4Sys only have maximum 5

RLAgent = RL4sys.init() Init RL Agent
Loop:

Request Action

act, traj = rl4sys.request_action(obs)
traj.add(act)

act.update_reward(value) Update Reward
traj.mark_end_of_trajectory() Trajectory End

12




Background Motivation Implementation Evaluation Conclusion @

Challenge 1: how to define system friendly interface

. System Software
1. RL4Sys only have maximum 5

RLAgent = RL4sys.init() Init RL Agent
Loop:

act, traj = . tion(obs
, traj rl4sy§ request_ac (obs) Request Action
traj.add(act) .

[act.update_rewa rd(value)] Update Reward
traj.mark_end_of_trajectory() Trajectory End

13




Background Motivation Implementation Evaluation Conclusion @

Challenge 1: how to define system friendly interface

. System Software
1. RL4Sys only have maximum 5

RLAgent = RL4sys.init() Init RL Agent
Loop:

act, traj = . tion(obs
, traj rl4sy§ request_ac (obs) Request Action
traj.add(act) .

act.update_reward(value) Update Reward
[traj.mark_end_of_trajectory() ] Trajectory End

14




Background Motivation Implementation Evaluation Conclusion @

Challenge 1: how to define system friendly interface

System Software .
1. Always retrieve best policy from RL4Sys Client @00
Server main()
g A
RLAgent = RL4sys.init() Init RL Agent

15



Background Motivation Implementation
I 400000

Evaluation

Conclusion

<

DIRLAB

Challenge 1: how to define system friendly interface

RL4Sys Client

@00

2. System call Agent for dominant
control

] System Software
main()
g A

Init RL Agent

!

Loop:

act, traj = rl4sys.request_action(obs)

. Request Action
traj.add(act) <

.

:

Obs. —
— ActS. _*@

16



Background Motivation Implementation Evaluation Conclusion @

Challenge 1: how to define system friendly interface

System Software .
{ 3. Delay reward updating strategy ] RL4Sys Client @00
best fit for system main()
g A
Init RL Agent

L
o |

Requeslt Action Obs. N __/
I (/// Act. —
I

é +Rew
act.update_reward(value) Update Reward /

A

17



Background Motivation Implementation Evaluation Conclusion @

Challenge 1: how to define system friendly interface

System Software
4. Send Trajectory to server at the RL4Sys Client @00
backend main()
Init RL Agent
1 | =
Loop: — | e =
o R- R-
Request Action Ob =
S. —
: Act. |- l
! ——> | +Rew
é / Server
Update Reward ‘

traj.mark_end_of_trajectory() Trajectory End I I ‘

18




Background

Motivation

Implementation

Evaluation Conclusion @

DIRLAB
Challenge 2: Prevent System Stalling & Overhead
System Software RL4Sys Client @00 RL4Sys Server @00
main()
g X % Policy Sender
Init RL Agent / \
1 \ o
Loop: 5_‘%_— ...... STQ_— ......
gikp
Request Action Obs. —% \ /
: _—|  Act. — N~ Trajectory
: e-//,; +Rew Dispatcher

0

-

Update Reward

S

Trajectory End

T
I ERR) - ERR)

19



Background

Motivation

Implementation Evaluation Conclusion @

DIRLAB

Challenge 2: Prevent System Stalling & Overhead

To Address this challenge, we have to know:

1.
2.
3.

OW C
OW C

OW C

oes R
oes R
oes R

| 4Sys minimize system latency?
| 4Sys minimize communication latency?

| 4Sys minimize training latency?

B = A4

alale] - Bl

20



Background Motivation Implementation Evaluation Conclusion @

DIRLAB
Challenge 2: Prevent System Stalling & Overhead
. I B
Client @000 : Server B
N ! C Client [
Request Action — : Requeslt Action = e Obs. RPC
I : O server
l I . :[Nith RPC | Aot po 1
e o N e o
Update Reward \ Obs I Update Reward [—_ | Ren, Obs.
. | W Act.
§ \7 Act. l : Env need
..... é\ +Rew : §<\_ tow:ittfor —>| +Rew
update
\\J 1 %\J
Local Infer !
1. Use Local policy to
Ir
speed up inference s bl

21




Background Motivation Implementation Evaluation Conclusion @

Challenge 2: Prevent System Stalling & Overhead
2. RL4Sys do All Data & policy model is
Asynchronous with marked with version
robust version Cached . % Policy Sender
management Local Policy
V1
l __E ,,,,,, — Training
o f%@; Q- V2 Policy
Request Action Obs. i‘
: Act. ~ 2N~ Trajectory
: / +Rew Dispatcher

EEE

22



<

DIRLAB

Challenge 2: Prevent System Stalling & Overhead

2. RL4Sys do RL4Sys can decide using
Asynchronous with these data for On/Off Policy
robust version Cached ﬁ Policy Sender
management Local Policy
V2 I
e
...... — Training
R- V3 Policy
Request Action Obs. /‘
_.> —
' Act. — |
| </ : \_

+Rew

0N~ Trajectory
/ Dispatcher

T
~EEE])

_ 23




Background

Motivation Implementation Evaluation Conclusion @

DIRLAB

Challenge 2: Prevent System Stalling & Overhead

Trajectory End

g_ oooooo @_
= if len(traj) >= SF
:/ then Send

Server Buffer

Sending condition depend 3. RL4Sys use gRPC &

on a parameter called

send frequency (SF) tunable RPC parameters

24



Background Motivation Implementation Evaluation Conclusion @

Challenge 2: Prevent System Stalling & Overhead

System Software

main()

?

Init RLlAgent 4. RL4Sys use Multi Agent

Loop: ......

Request Action \ /

: Trajectory
:5 ! Dispatcher

Update Reward

: CEEEEEE)

Trajectory End

25




Background Motivation Implementation Evaluation Conclusion
I S ——

Challenge 2: Prevent System Stalling & Overhead

. — — —

———————————

Fetch policy periodically

&
Pre-load, swap reference

5. RL4Sys update policy with
seamless interfere

<

DIRLAB

26



Background Motivation Implementation Evaluation Conclusion @

Evaluation of RL4Sys

« We use Real world use case examples as evidence of
RL4Sys’ correctness and performance and the
feasibility on other System scenarios.

« High throughput
. gtllgboverhead than baseline, 2.2x speedup than the SOTA solution,
|

* Low resource consumption
. EEIL_JbUsage/Core: 39%b0 overhead than baseline, 5x optimized than
|
« Memory Usage: 3-7% overhead than baseline compare with 20%
overhead for RLIib
2 T ——

27




Background Motivation Implementation Evaluation Conclusion @

DIRLAB
Evaluation — Job Scheduling (Setup & Baselines)

 We evaluate on two HPC scheduling workloads: either from a real
cluster SDSC SP2 or a synthesized trace Lublin256.

4 Baselines:

« Random Scheduling: scheduler with random actions. Simulate normal
Scheduler behavior.

« Static NN Policy: A policy network integrated in scheduler without RL update.
Simulate necessary latency using RL

« Conventional RLIlib: An RL-based Scheduler using RLIib (Ray’s framework) in
both local and remote modes.
« Local RLIib: same client-server architecture as RL4Sys

« Remote RLIib: Both policy and trainer is on server; Client must use heavy communication
and may block when fetching actions.

28




Background Motivation Implementation Evaluation Conclusion @

Evaluation — Job Scheduling (Throughput)

 Higher Throughput: RL4Sys achieves up to ~2.2%x the throughput of the RLIib-based schedulers
« The total runtime overhead stays under 6% compare with Static NN Policy

End to End Runtime Performance Comparison
(Steps per Second)

A 2490.2
2500
1976.7
2000 1863.7 1853.7 1865.8 1860.6

s
[
]
E

T 1500
[=]
o
o
2]
13
)
=%

» 1000
=3
2
wn

615.2
500
232.6
0 - -
Random Infer-Only RL4Sys RLA4Sys RLASys RL4Sys RLIib Local RLIib Remote
(SF=10) (SF=5) (SF=3) (SF=1)
Condition

29



Background Motivation Implementation Evaluation Conclusion @

Evaluation — Job Scheduling (Throughput)

 Higher Throughput: RL4Sys achieves up to ~2.2x the throughput of the RLIib-based schedulers
« The total runtime overhead stays under 6% compare with Static NN Policy

End to End Runtime Performance Comparison
(Steps per Second)

A 2490.2
2500
1976.7
2000 1863.7 1853.7 1865.8 1860.6

s
[
]
E

T 1500
[=]
o
o
2]
13
)
=%

o 1000
=3
2
wn

615.2
500
232.6
0 -
Random Infer-Only RL4Sys RLA4Sys RLASys RL4Sys RLIib Local RLIib Remote
(SF=10) (SF=5) (SF=3) (SF=1)
Condition

30



Background Motivation Implementation Evaluation Conclusion @

Evaluation — Job Scheduling (Resource)

« RL4Sys CPU usage is around 3.2-3.3% usage per core which is very close to Random/Static
NN policy and about 5 lower than RLIib Local’s 16.5%

« RL4Sys RAM usage 2-7% above the baseline (depend on send frequency) Whereas RLIib usage
20+9%0 higher memory consumption for Local mode.

CPU Usage per Core Comparison Memory Usage Comparison (First 20 s)
A (Average CPU Usage) A
16.5 —e— Random
% #— Infer-Only
—+— RL4Sys SF=10
1150 | —=— RL4Sys SF=5
14 —e— RL4Sys SF=3
—+— RL4Sys SF=1
RLIib Remote
T —— RLIib Local
8 o
© s 1100
3 10 ;‘
g &
Py [74]
2" 2
Pea)
5 s
=) £ 1050
T 6 ]
%) =
4 3.2 33 3.2 3.2
28 31
2.0
2 1000 ¥
0 1 o
Random Infer-Only RL4Sys SF=10 RL4Sys SF=5 RL4Sys SF=3 RL4Sys SF=1  RLIlib Remote RLIlib Local

Condition
0.0 25 5.0 75 10.0 125 15.0 17.5 20.0

Time (seconds)

31



Background Motivation Implementation Evaluation Conclusion @

Evaluation — Job Scheduling (Resource)

« RL4Sys CPU usage is around 3.2-3.3% per core which is very close to Random/Infer-Only and
about 5x lower than RLIib Local’s 16.5%

« RL4Sys RAM usage 2-7% above the baseline (depend on send frequency) Whereas RLIib usage
20+9% higher memory consumption for RLIib Local.

CPU Usage per Core Comparison Memory Usage Comparison (First 20 s)

A (Average CPU Usage) A
16.5 —e— Random
—=— Infer-Only
—+— RL4Sys SF=10
1150 | —=— RL4Sys SF=5
—+— RL4Sys SF=3
—+— RL4Sys SF=1

RLIib Remote
—— RLIib Local

=
=2}

[
'S

i
n

1100

6
4 3.2 3.3 3.2 3.2 i
28 31
2.0
2 1000 ¥
P

i — i

=
o

==}

Memory Usage (MB)
5
)

CPU Usage (% per core)

Random Infer-Only RLASys SF=10 RL4Sys SF=5 RL4Sys SF=3 RL4Sys SF=1 | RLIlib Remote RLIlib Local

Condition

0.0 25 5.0 75 10.0 125 15.0 17.5 20.0
Time (seconds)

32




Background Motivation Implementation Evaluation Conclusion @

DIRLAB

Evaluation — Job Scheduling (Correctness)

We use RL4Sys in Job Scheduler on SDSC SP2 and Lublin256.
The reward curve is compared with the baseline solution proposed in Zhanget al., 2020

N

N
Average Reward Comparison - Lublin Average Reward Comparison - SDSC
—e— Baseline (Avg per lter) -0 —s— Baseline (Avg per Iter)
—=— RL4Sys ~=— RL4Sys
-500

-300

-1000 -400 i

-1500

Reward

Reward

-600

-2000

-700

-2500

-800

(<]
o
=]

v

40 60 80 100
Epoch

o
[N
=]

40 60 80

100
Epoch

Zhang, D., Dai, D., He, Y., Bao, F. S., & Xie, B. (2020). RLScheduler: an automated HPC batch job scheduler using reinforcement
learning. In SC20: International Conference for High Performance Computing, Networking, Storage and Analysis (pp. 1-15). IEEE.

33



Background Motivation Implementation Evaluation Conclusion @

Evaluation — Lustre Optimization (Correctness)

- Parameters Tuned: We select )
max payload size per RPC, ' [ ‘ |
and max parallel RPC number

e)

—30000 +

Reward (Valu

- Baselines: We compare default
tuning with 2 on each
parameters against RL4Sys
dynamic tuning.

—— Baseline
—60000 1 —— RL4Sys

0 100 200 300 400 500
Step

34



Background Motivation Implementation Evaluation Conclusion @

DIRLAB

Conclusion

« We presented RL4Sys, an easy and
practical RL framework for real system.

« Our design exceed state-of-the-art RLIib
frameworks performance on System
Driven Paradigm.

 We proved RL4Sys delivered a correct
output with a large performance gains

with two examples https://github.com/DIR-
LAB/RL4Sys.git

35


https://github.com/DIR-LAB/RL4Sys.git
https://github.com/DIR-LAB/RL4Sys.git
https://github.com/DIR-LAB/RL4Sys.git

Questions

<

DIRLAB



	Slide 1: RL4Sys: A Lightweight System-Driven RL Framework for Drop-in Integration in System Optimization
	Slide 2: Reinforcement Learning in Modern Scenarios
	Slide 3: Reinforcement Learning in System Scenarios
	Slide 4: Why RL Is Hard to use in Real World Systems?
	Slide 5: Why RL Is Hard to use in Real World Systems?
	Slide 6: Why RL Is Hard to use in Real World Systems?
	Slide 7: RL4Sys: A Lightweight System-Driven RL Framework
	Slide 8: Challenge 1: how to define system friendly interface
	Slide 9: Challenge 1: how to define system friendly interface
	Slide 10: Challenge 1: how to define system friendly interface
	Slide 11: Challenge 1: how to define system friendly interface
	Slide 12: Challenge 1: how to define system friendly interface
	Slide 13: Challenge 1: how to define system friendly interface
	Slide 14: Challenge 1: how to define system friendly interface
	Slide 15: Challenge 1: how to define system friendly interface
	Slide 16: Challenge 1: how to define system friendly interface
	Slide 17: Challenge 1: how to define system friendly interface
	Slide 18: Challenge 1: how to define system friendly interface
	Slide 19: Challenge 2: Prevent System Stalling & Overhead
	Slide 20: Challenge 2: Prevent System Stalling & Overhead
	Slide 21: Challenge 2: Prevent System Stalling & Overhead
	Slide 22: Challenge 2: Prevent System Stalling & Overhead
	Slide 23: Challenge 2: Prevent System Stalling & Overhead
	Slide 24: Challenge 2: Prevent System Stalling & Overhead
	Slide 25: Challenge 2: Prevent System Stalling & Overhead
	Slide 26: Challenge 2: Prevent System Stalling & Overhead
	Slide 27: Evaluation of RL4Sys
	Slide 28: Evaluation – Job Scheduling (Setup & Baselines)
	Slide 29: Evaluation – Job Scheduling (Throughput)
	Slide 30: Evaluation – Job Scheduling (Throughput)
	Slide 31: Evaluation – Job Scheduling (Resource)
	Slide 32: Evaluation – Job Scheduling (Resource)
	Slide 33: Evaluation – Job Scheduling (Correctness)
	Slide 34: Evaluation – Lustre Optimization (Correctness)
	Slide 35: Conclusion
	Slide 36: Questions

