
RL4Sys: A Lightweight System-Driven 
RL Framework for Drop-in Integration 

in System Optimization

Jiaxin Dong1

jiddong@udel.edu
Md. Hasanur Rashid1

mrashid@udel.edu
Dong Dai1

dai@udel.edu
Helen Xu2

hxu615@gatech.edu

1 2



Reinforcement Learning in Modern Scenarios

2

Background Motivation Implementation Evaluation Conclusion

Atari Game
(Mnih et al., 2015)

Mnih, V., Kavukcuoglu, K., Silver, D., et al. “Human-
level control through deep reinforcement learning.” 

Nature 518, 529–533, 2015.

Robotic
(Levine et al., 2016)

Levine, S., Finn, C., Darrell, T., & Abbeel, P. “End-to-
End Training of Deep Visuomotor Policies.” Journal of 

Machine Learning Research 17(39), 1–40, 2016

Recommendation
(Zou et al., 2019)

Zou, L., Xia, L., Ding, Z., Song, J., Liu, W., & Yin, D.
“Reinforcement Learning to Optimize Long-term User Engagement in 

Recommender Systems.”
In Proceedings of the 25th ACM SIGKDD Conference on Knowledge Discovery 

and Data Mining (KDD ’19), 2810–2818, 2019.



Reinforcement Learning in System Scenarios

3

Background Motivation Implementation Evaluation Conclusion



Why RL Is Hard to use in Real World 
Systems?

4

Background Motivation Implementation Evaluation Conclusion

Stable Baseline 3 env.step()

env.reset()

make act

Receive Obs. & reward

Resume Scheduler

Pause Scheduler

Job Scheduler
Environment

Traditional
RL Frameworks Traditional Agent-Driven Paradigm For ex. 

Job Scheduler



Why RL Is Hard to use in Real World 
Systems?

5

Background Motivation Implementation Evaluation Conclusion

env.step()

env.reset()

Job Scheduler
SimulationHuge Costif sys.run() do:

…..
end
Int main():
…

Real job
Scheduler



Why RL Is Hard to use in Real World 
Systems?

6

Background Motivation Implementation Evaluation Conclusion

make act

Receive Obs. & reward

Resume Scheduler

Pause Scheduler

Job Scheduler
Simulation

Agent owns the 
control loop

Synchronize/blocking Scheduler 
simulation running

Assuming next observation and 
rewards are immediately 

available after each action

Use fixed HPC 
trace or 

synthesized trace



RL4Sys: A Lightweight System-Driven RL Framework

7

Background Motivation Implementation Evaluation Conclusion

System Software

main()

Init RL Agent

Request Action

Update Reward

Trajectory End

Loop:

RL4Sys Client

Cached
Local Policy

Send 
Traj. ?

Obs.
Act.

+Rew

……

RL4Sys Server

Yes ……

Trajectory
Dispatcher

Policy 1 
trainer

…… Policy n
trainer

Policy Sender



Challenge 1: how to define system friendly interface

8

Background Motivation Implementation Evaluation Conclusion

System Software

main()

Init RL Agent

Request Action

Update Reward

Trajectory End

Loop:

RL4Sys Client

Cached
Local Policy

Send 
Traj. ?

Obs.
Act.

+Rew

……

RL4Sys Server

Yes ……

Trajectory
Dispatcher

Policy 1 
trainer

…… Policy n
trainer

Policy Sender



Challenge 1: how to define system friendly interface

9

Background Motivation Implementation Evaluation Conclusion

System Software

main()

Init RL Agent

Request Action

Update Reward

Trajectory End

Loop:

RL4Sys Client

Cached
Local Policy

Send 
Traj. ?

Obs.
Act.

+Rew

……

RL4Sys Server

Yes ……

Trajectory
Dispatcher

Policy 1 
trainer

…… Policy n
trainer

Policy Sender

To Address this challenge, we have to know:
1. How does the RL4Sys workflow looks like?
2. How does the Real System integrate RL4Sys?



Challenge 1: how to define system friendly interface

10

Background Motivation Implementation Evaluation Conclusion

System Software

main()

Init RL Agent

Request Action

Update Reward

Trajectory End

Loop:

RL4Sys Client

Cached
Local Policy

Send 
Traj. ?

Obs.
Act.

+Rew

……

Yes

1. RL4Sys only have maximum 5 
APIs

RLAgent = RL4sys.init()

act, traj = rl4sys.request_action(obs)
traj.add(act)

act.update_reward(value)

traj.mark_end_of_trajectory()



Challenge 1: how to define system friendly interface

11

Background Motivation Implementation Evaluation Conclusion

System Software

main()

Init RL Agent

Request Action

Update Reward

Trajectory End

Loop:

RL4Sys Client

Cached
Local Policy

Send 
Traj. ?

Obs.
Act.

+Rew

……

Yes

RLAgent = RL4sys.init()

act, traj = rl4sys.request_action(obs)
traj.add(act)

act.update_reward(value)

traj.mark_end_of_trajectory()

1. RL4Sys only have maximum 5 
APIs



Challenge 1: how to define system friendly interface

12

Background Motivation Implementation Evaluation Conclusion

System Software

main()

Init RL Agent

Request Action

Update Reward

Trajectory End

Loop:

RL4Sys Client

Cached
Local Policy

Send 
Traj. ?

Obs.
Act.

+Rew

……

Yes

RLAgent = RL4sys.init()

act, traj = rl4sys.request_action(obs)
traj.add(act)

act.update_reward(value)

traj.mark_end_of_trajectory()

1. RL4Sys only have maximum 5 
APIs



Challenge 1: how to define system friendly interface

13

Background Motivation Implementation Evaluation Conclusion

System Software

main()

Init RL Agent

Request Action

Update Reward

Trajectory End

Loop:

RL4Sys Client

Cached
Local Policy

Send 
Traj. ?

Obs.
Act.

+Rew

……

Yes

RLAgent = RL4sys.init()

act, traj = rl4sys.request_action(obs)
traj.add(act)

act.update_reward(value)

traj.mark_end_of_trajectory()

1. RL4Sys only have maximum 5 
APIs



Challenge 1: how to define system friendly interface

14

Background Motivation Implementation Evaluation Conclusion

System Software

main()

Init RL Agent

Request Action

Update Reward

Trajectory End

Loop:

RL4Sys Client

Cached
Local Policy

Send 
Traj. ?

Obs.
Act.

+Rew

……

Yes

RLAgent = RL4sys.init()

act, traj = rl4sys.request_action(obs)
traj.add(act)

act.update_reward(value)

traj.mark_end_of_trajectory()

1. RL4Sys only have maximum 5 
APIs



Challenge 1: how to define system friendly interface

15

Background Motivation Implementation Evaluation Conclusion

System Software

main()

Request Action

Update Reward

Trajectory End

Loop:

RL4Sys Client

Send 
Traj. ?

Obs.
Act.

+Rew

……

Yes

RLAgent = RL4sys.init()

act, traj = rl4sys.request_action(obs)
traj.add(act)

act.update_reward(value)

traj.mark_end_of_trajectory()

Cached
Local Policy

Init RL Agent

1. Always retrieve best policy from 
Server



Challenge 1: how to define system friendly interface

16

Background Motivation Implementation Evaluation Conclusion

System Software

main()

Init RL Agent

Update Reward

Trajectory End

RL4Sys Client

Send 
Traj. ?

……

Yes

2. System call Agent for dominant 
control

RLAgent = RL4sys.init()

act, traj = rl4sys.request_action(obs)
traj.add(act)

act.update_reward(value)

traj.mark_end_of_trajectory()

Request Action

Loop:

Cached
Local Policy

Obs.
Act.

+Rew



Challenge 1: how to define system friendly interface

17

Background Motivation Implementation Evaluation Conclusion

System Software

main()

Init RL Agent

Trajectory End

RL4Sys Client

Send 
Traj. ?

……

Yes

3. Delay reward updating strategy 
best fit for system

RLAgent = RL4sys.init()

act, traj = rl4sys.request_action(obs)
traj.add(act)

act.update_reward(value)

traj.mark_end_of_trajectory()

Request Action

Loop:

Cached
Local Policy

Obs.
Act.

+Rew

Update Reward



Challenge 1: how to define system friendly interface

18

Background Motivation Implementation Evaluation Conclusion

System Software

main()

Init RL Agent

RL4Sys Client4. Send Trajectory to server at the 
backend

RLAgent = RL4sys.init()

act, traj = rl4sys.request_action(obs)
traj.add(act)

act.update_reward(value)

traj.mark_end_of_trajectory()

Request Action

Loop:

Cached
Local Policy

Obs.
Act.

+Rew

Update Reward

Trajectory End

Send 
Traj. ?

Yes

……

Server



Challenge 2: Prevent System Stalling & Overhead

19

Background Motivation Implementation Evaluation Conclusion

System Software

main()

Init RL Agent

Request Action

Update Reward

Trajectory End

Loop:

RL4Sys Client

Cached
Local Policy

Send 
Traj. ?

Obs.
Act.

+Rew

……

RL4Sys Server

Yes ……

Trajectory
Dispatcher

Policy 1 
trainer

…… Policy n
trainer

Policy Sender



Challenge 2: Prevent System Stalling & Overhead

20

Background Motivation Implementation Evaluation Conclusion

System Software

main()

Init RL Agent

Request Action

Update Reward

Trajectory End

Loop:

RL4Sys Client

Cached
Local Policy

Send 
Traj. ?

Obs.
Act.

+Rew

……

RL4Sys Server

Yes ……

Trajectory
Dispatcher

Policy 1 
trainer

…… Policy n
trainer

Policy Sender

To Address this challenge, we have to know:
1. How does RL4Sys minimize system latency?
2. How does RL4Sys minimize communication latency?
3. How does RL4Sys minimize training latency?



RL4Sys Client

Challenge 2: Prevent System Stalling & Overhead

21

Background Motivation Implementation Evaluation Conclusion

1. Use Local policy to 
speed up inference

Request Action Client Cached
Local Policy

Update Reward

Local Infer
No RPC

Remote
Policy

Obs.
Act.

+Rew

Remote Infer
Require RPC

…..

…..

Request Action

Update Reward

…..

…..

RL Server

RL Client

Forward 
to server 
with RPC

Env need 
to wait for 

update

Obs. RPC

Obs.
Act.

+Rew

Client Server
Client



Challenge 2: Prevent System Stalling & Overhead

22

Background Motivation Implementation Evaluation Conclusion

Update Reward

Trajectory End

Loop:

Send 
Traj. ?

Yes

Policy Sender

Request Action

Cached
Local Policy 

V1

Obs.
Act.

+Rew

……

Trajectory
Dispatcher

Training 
V2 Policy

All Data & policy model is 
marked with version

2. RL4Sys do 
Asynchronous with 
robust version 
management



Challenge 2: Prevent System Stalling & Overhead

23

Background Motivation Implementation Evaluation Conclusion

Update Reward

Trajectory End

Loop:

Send 
Traj. ?

Yes

Policy Sender

Request Action

Cached
Local Policy 

V2

Obs.
Act.

+Rew

……

Trajectory
Dispatcher

RL4Sys can decide using 
these data for On/Off Policy

Training 
V3 Policy

2. RL4Sys do 
Asynchronous with 
robust version 
management



Challenge 2: Prevent System Stalling & Overhead

24

Background Motivation Implementation Evaluation Conclusion

Request Action

Update Reward

Loop:

Obs.
Act.

+Rew

……

3. RL4Sys use gRPC & 
tunable RPC parameters

Trajectory End

Send 
Traj. ?

……

Yes

Sending condition depend 
on a parameter called 
send frequency (SF)

if len(traj) >= SF 
then Send 

Server Buffer



Challenge 2: Prevent System Stalling & Overhead

25

Background Motivation Implementation Evaluation Conclusion

RL4Sys Client

……..

RL4Sys Server

4. RL4Sys use Multi Agent

System Software

main()

Init RL Agent

Request Action

Update Reward

Trajectory End

Loop:

Send 
Traj. ?

Yes ……

Trajectory
Dispatcher

Policy 1 
trainer

…… Policy n
trainer



……..

Challenge 2: Prevent System Stalling & Overhead

26

Background Motivation Implementation Evaluation Conclusion

System Software

main()

Init RL Agent

Request Action

Update Reward

Trajectory End

Loop:

RL4Sys Client RL4Sys Server

5. RL4Sys update policy with 
seamless interfere

Cached
Local Policy

New
Local Policy

Fetch policy periodically
&

Pre-load, swap reference 

……..



Evaluation of RL4Sys

27

• We use Real world use case examples as evidence of 
RL4Sys’ correctness and performance and the 
feasibility on other System scenarios.

• High throughput
• 6% overhead than baseline, 2.2x speedup than the SOTA solution, 

RLlib

• Low resource consumption
• CPU Usage/Core: 3% overhead than baseline, 5x optimized than 

RLlib
• Memory Usage: 3-7% overhead than baseline compare with 20% 

overhead for RLlib

Background Motivation Implementation Evaluation Conclusion



Evaluation – Job Scheduling (Setup & Baselines)

28

• We evaluate on two HPC scheduling workloads: either from a real 
cluster SDSC SP2 or a synthesized trace Lublin256. 

4 Baselines:

• Random Scheduling: scheduler with random actions. Simulate normal 
Scheduler behavior.

• Static NN Policy: A policy network integrated in scheduler without RL update. 
Simulate necessary latency using RL

• Conventional RLlib: An RL-based Scheduler using RLlib (Ray’s framework) in 
both local and remote modes.

• Local RLlib: same client-server architecture as RL4Sys 

• Remote RLlib: Both policy and trainer is on server; Client must use heavy communication 
and may block when fetching actions.

Background Motivation Implementation Evaluation Conclusion



Evaluation – Job Scheduling (Throughput)

29

• Higher Throughput: RL4Sys achieves up to ~2.2× the throughput of the RLlib-based schedulers

• The total runtime overhead stays under 6% compare with Static NN Policy

Background Motivation Implementation Evaluation Conclusion



Evaluation – Job Scheduling (Throughput)

30

• Higher Throughput: RL4Sys achieves up to ~2.2× the throughput of the RLlib-based schedulers

• The total runtime overhead stays under 6% compare with Static NN Policy

Background Motivation Implementation Evaluation Conclusion



Evaluation – Job Scheduling (Resource)

31

• RL4Sys CPU usage is around 3.2–3.3% usage per core which is very close to Random/Static 
NN policy and about 5× lower than RLlib Local’s 16.5% 

• RL4Sys RAM usage 2–7% above the baseline (depend on send frequency) Whereas RLlib usage 
20+% higher memory consumption for Local mode.

Background Motivation Implementation Evaluation Conclusion



Evaluation – Job Scheduling (Resource)

32

• RL4Sys CPU usage is around 3.2–3.3% per core which is very close to Random/Infer-Only and 
about 5× lower than RLlib Local’s 16.5% 

• RL4Sys RAM usage 2–7% above the baseline (depend on send frequency) Whereas RLlib usage 
20+% higher memory consumption for RLlib Local.

Background Motivation Implementation Evaluation Conclusion



Evaluation – Job Scheduling (Correctness)

33

Background Motivation Implementation Evaluation Conclusion

We use RL4Sys in Job Scheduler on SDSC SP2 and Lublin256.
The reward curve is compared with the baseline solution proposed in Zhang et al., 2020

Zhang, D., Dai, D., He, Y., Bao, F. S., & Xie, B. (2020). RLScheduler: an automated HPC batch job scheduler using reinforcement 
learning. In SC20: International Conference for High Performance Computing, Networking, Storage and Analysis (pp. 1–15). IEEE. 



Evaluation – Lustre Optimization (Correctness)

34

• Parameters Tuned: We select 
max payload size per RPC, 
and max parallel RPC number 

• Baselines: We compare default 
tuning with 2 on each 
parameters against RL4Sys 
dynamic tuning. 

Background Motivation Implementation Evaluation Conclusion



Conclusion

35

• We presented RL4Sys, an easy and 
practical RL framework for real system. 

• Our design exceed state-of-the-art RLlib 
frameworks performance on System 
Driven Paradigm.

• We proved RL4Sys delivered a correct 
output with a large performance gains 
with two examples

Background Motivation Implementation Evaluation Conclusion

https://github.com/DIR-
LAB/RL4Sys.git 

https://github.com/DIR-LAB/RL4Sys.git
https://github.com/DIR-LAB/RL4Sys.git
https://github.com/DIR-LAB/RL4Sys.git


Questions

36


	Slide 1: RL4Sys: A Lightweight System-Driven RL Framework for Drop-in Integration in System Optimization
	Slide 2: Reinforcement Learning in Modern Scenarios
	Slide 3: Reinforcement Learning in System Scenarios
	Slide 4: Why RL Is Hard to use in Real World Systems?
	Slide 5: Why RL Is Hard to use in Real World Systems?
	Slide 6: Why RL Is Hard to use in Real World Systems?
	Slide 7: RL4Sys: A Lightweight System-Driven RL Framework
	Slide 8: Challenge 1: how to define system friendly interface
	Slide 9: Challenge 1: how to define system friendly interface
	Slide 10: Challenge 1: how to define system friendly interface
	Slide 11: Challenge 1: how to define system friendly interface
	Slide 12: Challenge 1: how to define system friendly interface
	Slide 13: Challenge 1: how to define system friendly interface
	Slide 14: Challenge 1: how to define system friendly interface
	Slide 15: Challenge 1: how to define system friendly interface
	Slide 16: Challenge 1: how to define system friendly interface
	Slide 17: Challenge 1: how to define system friendly interface
	Slide 18: Challenge 1: how to define system friendly interface
	Slide 19: Challenge 2: Prevent System Stalling & Overhead
	Slide 20: Challenge 2: Prevent System Stalling & Overhead
	Slide 21: Challenge 2: Prevent System Stalling & Overhead
	Slide 22: Challenge 2: Prevent System Stalling & Overhead
	Slide 23: Challenge 2: Prevent System Stalling & Overhead
	Slide 24: Challenge 2: Prevent System Stalling & Overhead
	Slide 25: Challenge 2: Prevent System Stalling & Overhead
	Slide 26: Challenge 2: Prevent System Stalling & Overhead
	Slide 27: Evaluation of RL4Sys
	Slide 28: Evaluation – Job Scheduling (Setup & Baselines)
	Slide 29: Evaluation – Job Scheduling (Throughput)
	Slide 30: Evaluation – Job Scheduling (Throughput)
	Slide 31: Evaluation – Job Scheduling (Resource)
	Slide 32: Evaluation – Job Scheduling (Resource)
	Slide 33: Evaluation – Job Scheduling (Correctness)
	Slide 34: Evaluation – Lustre Optimization (Correctness)
	Slide 35: Conclusion
	Slide 36: Questions

