
SOGANGUNIVERSITY

Fault-Tolerant Deep Learning Cache with
Hash Ring for Load Balancing in HPC Systems

Seoyeong Lee¹, Awais Khan², Yoochan Kim¹, Junghwan Park¹, Soon Hwang¹,

Jae-Kook Lee³, Taeyoung Hong³, Christopher Zimmer ², Youngjae Kim¹

¹ Dept. of Computer Science and Engineering, Sogang University

² Oak Ridge National Laboratory, ³ KISTI,

2024 9th International Workshop on Parallel Data Storage, held in conjunction with SC24, Nov 17 ŕ22, 2024, Atlanta, GA

SOGANG UNIVERSITY

ÅBackground

ÅProblem Definition

ÅDesign & Implementation

ÅEvaluation

ÅConclusion

Contents

2

SOGANG UNIVERSITY

Background

3

SOGANG UNIVERSITY

Data Set
Mini
batch
Mini
batch
Mini

batch

b0

b1

b2

GPU

GPU

GPU

B
a

ck
e
n

d
 C

o
m

m
u
n

ic
a

ti
o
n

ά.ŀǘŎƘ tŀǊǘƛǘƛƻƴƛƴƎέ

Parameter update

Model Replication

Distributed Deep Learningin HPC

ÅThe Data Parallel Approach
ÅReplicates the deep learning model across nodes while distributing

the training dataset among all nodes.

4

Background

SOGANG UNIVERSITY

Compute Node

Storage

Parameter update

Data I/O Data I/O

Compute NodeCompute Node

Backend Communication

Distributed Deep Learningin HPC

ÅThree key aspects of Distributed Deep Learning
ÅI/O , Computation, Communication

ÅMost prior research efforts have concentrated on improving computation
and communication.

Communication

Computation

I/O

5

Background

SOGANG UNIVERSITY

[1] N. Dryden, R. Böhringer , T. Ben-Nun, and T. Hoefler , "Clairvoyant Prefetching for Distributed Machine Learning I/O," Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (SC '21), 2021.

Distributed Deep Learningin HPC

ÅHowever, the optimizations in computation and communication, along
with the development of modern computational accelerators and
network technologies, have shifted the bottleneck towards I/O.
ÅI/O accounts for 67 -85% of total training time [1] .
ÅTraining ResNet50 on ImageNet: 85% of training runtime is IO overhead

67-85% of I/O

Computation

Computation

6

Background

SOGANG UNIVERSITY

7

Characteristics of Deep Learning Image Dataset

ÅɈLarge Number of Small Filesɉ
ÅImageNet -1K: 1.28 million images (-150KB)
ÅImageNet -21K: 11 million images (-163KB)
ÅOpenImages : 9 million images (-150KB)
ÅGoogle Landmarks Dataset v2: 5 million images (-200KB)
ÅPlaces365: 10 million images (-150KB)

ÅThe HPC I/O subsystem is not designed to efficiently handle the large -
scale data I/O access required by deep learning frameworks.

Background

SOGANG UNIVERSITY

[2] Y. Zhu, "Entropy -Aware I/O Pipelining for Large -Scale Deep Learning on HPC Systems," Proceedings of the IEEE 26th Internatio nal Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), 2018.

Optimizing I/O for Deep Learning Workloads

ÅNoPFS[1]

ÅOptimizes prefetching and caching by predicting data access patterns, reducing
latency in training I/O.

ÅDeepIO[2]

ÅMinimizes backend storage reads by keeping data in memory, focusing on reducing
read latency and boosting I/O efficiency for distributed training.

ÅHVAC[3]

ÅCaches data on node -local NVMe, specifically reducing repetitive I/O reads during
training.

[3] A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and F. Wang, "HVAC: Removing I/O Bottleneck for Large -Scale Deep Learning Applications,"
Proceedings of the IEEE International Conference on Cluster Computing (Cluster), 2022.

8

Background

SOGANG UNIVERSITY

HVAC: High-Velocity AI Cache

ÅHVAC, a transparent read -only caching layer for large -scale supercomputers using
node-local NVMe.
ÅScalability
ÅDesigned to scale across thousands of compute nodes on leadership -class

supercomputers like Summit and Frontier.
ÅAvoids additional metadata bottlenecks and storage overhead.

ÅClient -Server Library Architecture
ÅIntercepts <open -read -close> file I/O operations via LD_PRELOAD using a shared

library approach.
ÅData is cached to distributed node -local storage.
ÅUtilizes distributed hashing to determine the location of cached content across

nodes. Ą No Repeated Access to PFS

9

Background

SOGANG UNIVERSITY

HVAC Overview

ÅHVAC Server
ÅBuilds a caching layer on node-local fast

storage.
ÅHandles system calls forwarded by HVAC

clients.
ÅReads files from node -local storage if

available, or retrieves files from the PFS and
caches them to node -local storage.

ÅHVAC Client
ÅIntercepts system calls directed to the PFS

and redirects them to the HVAC server.

10

Background

SOGANG UNIVERSITY

[4] B. Schroeder and G. A. Gibson, "A Large-Scale Study of Failures in High-Performance Computing Systems," IEEE Transactions on Dependable and Secure Computing, vol. 7, no. 4, pp.
337-350, Oct.-Dec. 2010.

Increasing Node Failures in HPC and AI Workloads

ÅNode Failure Rates Rise with Complexity
ÅLarger, more complex HPC systems have higher node

failure rates.
ÅFailure rates scale with system size, increasing linearly as

more processors are added [4] .

ÅIntensive Workloads Increase Failure Probability
ÅHigh -demand tasks, such as large -scale deep learning

jobs, also increase the risk of failure.
ÅRunning multiple nodes for deep learning exacerbates

the likelihood of failure event.

11

Background

SOGANG UNIVERSITY

Increasing Node Failures in HPC and AI Workloads

ÅNode Failure Rates Rise with Complexity
ÅLarger, more complex HPC systems have higher node

failure rates.
ÅFailure rates scale with system size, increasing linearly as

more processors are added [4] .

ÅIntensive Workloads Increase Failure Probability
ÅHigh -demand tasks, such as large -scale deep learning

jobs, also increase the risk of failure.
ÅRunning multiple nodes for deep learning exacerbates

the likelihood of failure event.

However, HVAC currently lacks fault tolerance support , which
limits its resilience in handling node failures.

12[4] B. Schroeder and G. A. Gibson, "A Large-Scale Study of Failures in High-Performance Computing Systems," IEEE Transactions on Dependable and Secure Computing, vol. 7, no. 4, pp.
337-350, Oct.-Dec. 2010.

Background

SOGANG UNIVERSITY

Failures in HVAC

ÅEven a single node failure can halt the entire training process,
despite fault-tolerance support in the DL framework.

ÅE.g. Elastic Scaling - Horovod Elastic Run, MPI ULFM

ÅThis happens because I/O flows are controlled by HVAC.
Ą The job must be restarted.

13

Background

SOGANG UNIVERSITY

Failures in HVAC

ÅEven a single node failure can halt the entire training process,
despite fault-tolerance support in the DL framework.

ÅE.g. Elastic Scaling - Horovod Elastic Run, MPI ULFM

ÅThis happens because I/O flows are controlled by HVAC.
Ą The job must be restarted.

14

Background

Therefore, it is crucial to ensure fault tolerance in the HVAC
layer to prevent training interruptions!

SOGANG UNIVERSITY

Naïve Approach

ÅBecause HVAC functions as a caching layer, the original data
resides in the PFS.
ÅI/O requests to failed nodes Ą redirected to PFS!

PFS

HVAC
Server 1

HVAC
Server 2

HVAC
Server 3

NVMeCopy

Original Data

15

Background

SOGANG UNIVERSITY

I/O Redirection to PFS

PFS

HVAC
Server 1

HVAC
Client

DL App

HVAC
Server 2

HVAC
Client

DL App

HVAC
Server 3

HVAC
Client

DL App

Redirection to

PFS

άŦŀƛƭǳǊŜέ

16

Background

SOGANG UNIVERSITY

Limitations of PFS I/O Redirection

Å22 mins per epoch x 5 epochs Ą
nearly 2 hours
ÅPartial data reads from PFS still

cause delays

PFS Epoch NVMe Epoch

E
p
o
ch

 t
im

e
 (

m
in

s)

0

20

40

60

80

100

120

* The data is from A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and F. Wang, "HVAC: Removing I/O Bottleneck for Large-Scale Deep Learning
Applications," Proceedings of the IEEE International Conference on Cluster Computing (Cluster), 2022.

22mins, 23%

17

Background

ɈFrequent future PFS accessɉ

SOGANG UNIVERSITY

Limitations of PFS I/O Redirection

Å22 mins per epoch x 5 epochs Ą
nearly 2 hours
ÅPartial data reads from PFS still

cause delays
ÅStraggler Problem: Even if a few

nodes access PFS, deep learning
synchronization at each iteration
forces other nodes to wait Ą
reducing parallelism and
scalability.PFS Epoch NVMe Epoch

E
p
o
ch

 t
im

e
 (

m
in

s)

0

20

40

60

80

100

120

* The data is from A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and F. Wang, "HVAC: Removing I/O Bottleneck for Large-Scale Deep Learning
Applications," Proceedings of the IEEE International Conference on Cluster Computing (Cluster), 2022.

22mins, 23%

18

Background

ɈFrequent future PFS accessɉ

SOGANG UNIVERSITY

Limitations of PFS I/O Redirection

Å22 mins per epoch x 5 epochs Ą
nearly 2 hours
ÅPartial data reads from PFS still

cause delays
ÅStraggler Problem: Even if a few

nodes access PFS, deep learning
synchronization at each iteration
forces other nodes to wait Ą
reducing parallelism and
scalability.
ÅJob Time Limitations: Risk of

exceeding pre -defined job time.

PFS Epoch NVMe Epoch

E
p
o
ch

 t
im

e
 (

m
in

s)

0

20

40

60

80

100

120

* The data is from A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and F. Wang, "HVAC: Removing I/O Bottleneck for Large-Scale Deep Learning
Applications," Proceedings of the IEEE International Conference on Cluster Computing (Cluster), 2022.

22mins, 23%

19

Background

ɈFrequent future PFS accessɉ

SOGANG UNIVERSITY

Limitations of PFS I/O Redirection

Å22 mins per epoch x 5 epochs Ą
nearly 2 hours
ÅPartial data reads from PFS still

cause delays
ÅStraggler Problem: Even if a few

nodes access PFS, deep learning
synchronization at each iteration
forces other nodes to wait Ą
reducing parallelism and
scalability.
ÅJob Time Limitations: Risk of

exceeding pre -defined job time.

PFS Epoch NVMe Epoch

E
p
o
ch

 t
im

e
 (

m
in

s)

0

20

40

60

80

100

120

* The data is from A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and F. Wang, "HVAC: Removing I/O Bottleneck for Large-Scale Deep Learning
Applications," Proceedings of the IEEE International Conference on Cluster Computing (Cluster), 2022.

22mins, 23%

20

Background

ɈFrequent future PFS accessɉ

Re-caching Mechanism
Read from PFS once, then access re -cached data for future requests

SOGANG UNIVERSITY

Challenge: Handling Data Redistribution

ÅOriginal HVAC Implementation - Static Hash Partitioning
ÅData paths are converted to key values and distributed across nodes using a modulo

operation.
ÅOn node failure, recalculating hash values for Nɩ1 nodes causes extensive data

redistribution.

PFS PFS

21

Background

SOGANG UNIVERSITY

Challenge: Handling Data Redistribution

ÅAdditional Hash Functions
ÅReduces data movement but doesn t address multiple unpredictable failures

ÅRange Partitioning
ÅCan handle multiple node failures, but balancing data distribution remains

challenging.

ά[ƻŀŘ LƳōŀƭŀƴŎŜέ

22

Background

SOGANG UNIVERSITY

Problem Definition

ÅHow can we track data locations that change after re -caching?
ÅHow can we redistribute lost data evenly across remaining active nodes?

23

Problem Definition

SOGANG UNIVERSITY

Design & Implementation

24

SOGANG UNIVERSITY

Design of FT-HVAC

ÅFT-HVAC: An I/O accelerated caching framework with fault
tolerance for large -scale distributed deep learning.

25

Design

SOGANG UNIVERSITY

Design of FT-HVAC

ÅFT-HVAC: An I/O accelerated caching framework with fault
tolerance for large -scale distributed deep learning.

1. Enable fault tolerance in HVAC.
2. Implement data recaching within the HVAC layer to ensure

data availability and quick access during node failures.
3. Achieve load -balanced data recaching.

26

Design

SOGANG UNIVERSITY

Elastic Recaching with Hash Ring

ÅHash Ring Mechanism

<Before Failure>

Node 0

Node 1

Node 2

Virtual nodes

0.000

0.375

0.125

0.500

0.875

0.625

File A

File E

0.083427

0.293853

ê ê

0.375

Node Table Hash Table

27

Design

SOGANG UNIVERSITY

Elastic Recaching with Hash Ring

ÅHash Ring Mechanism

<Before Failure>

Node 0

Node 1

Node 2

Virtual nodes

0.000

0.375

0.125

0.500

0.875

0.625

File A

File E

0.083427

0.293853

ê ê

0.375

Node Table Hash Table

28

Design

SOGANG UNIVERSITY

Elastic Recaching with Hash Ring

ÅHash Ring Mechanism

<Before Failure>

Node 0

Node 1

Node 2

Virtual nodes

0.000

0.375

0.125

0.500

0.875

0.625

File A

File E

0.083427

0.293853

ê ê

Node Table Hash Table

άCŀƛƭǳǊŜ ŀǘ bƻŘŜ мέ

0.375

29

Design

SOGANG UNIVERSITY

Elastic Recaching with Hash Ring

ÅHash Ring Mechanism

<After Failure>

Node 0

Node 1

Node 2

Virtual nodes

0.000

0.375

0.125

0.500

0.875

0.625

File A

File E

0.083427

0.293853

ê ê

Node Table Hash Table

30

Design

SOGANG UNIVERSITY

Elastic Recaching with Hash Ring

PFS

άLƴǘŜǊŎŜǇǘŜŘέ

HVAC
Server 1

HVAC
Client

DL App

HVAC
Server 2

HVAC
Client

DL App

HVAC
Server 3

HVAC
Client

DL App

1. Read

request

31

Design

SOGANG UNIVERSITY

Elastic Recaching with Hash Ring

PFS

HVAC
Server 1

HVAC
Client

DL App

HVAC
Server 2

E

HVAC
Client

DL App

HVAC
Server 3

HVAC
Client

DL App

2. Request to

Server

32

Design

SOGANG UNIVERSITY

άŦŀƛƭǳǊŜέ

Elastic Recaching with Hash Ring

PFS

HVAC
Server 1

HVAC
Client

DL App

HVAC
Server 2

E

HVAC
Client

DL App

HVAC
Server 3

HVAC
Client

DL App

3. Timed out

33

Design

SOGANG UNIVERSITY

άŦŀƛƭǳǊŜέ

Elastic Recaching with Hash Ring

PFS

HVAC
Server 1

HVAC
Client

DL App

HVAC
Server 2

E

HVAC
Client

DL App

HVAC
Server 3

HVAC
Client

DL App

3. Timed out

άwŜƳƻǾŜ ǘƘŜ ŦŀƛƭŜŘ ƴƻŘŜ
ŦǊƻƳ ǘƘŜ ƘŀǎƘ ǊƛƴƎέ

34

Design

SOGANG UNIVERSITY

Elastic Recaching with Hash Ring

PFS

HVAC
Server 1

HVAC
Client

DL App

HVAC
Server 2

E

HVAC
Client

DL App

HVAC
Server 3

HVAC
Client

DL App

4. Retry hash

calculation

35

Design

SOGANG UNIVERSITY

Elastic Recaching with Hash Ring

PFS

HVAC
Server 1

HVAC
Client

DL App

HVAC
Server 2

E

HVAC
Client

DL App

HVAC
Server 3

HVAC
Client

DL App

5. Checks the

data

άƳƛǎǎƛƴƎέ

36

Design

SOGANG UNIVERSITY

Elastic Recaching with Hash Ring

PFS

HVAC
Server 1

HVAC
Client

DL App

HVAC
Server 2

E

HVAC
Client

DL App

HVAC
Server 3

HVAC
Client

DL App

6. Reads from PFS

(1)

(2)

E

37

Design

SOGANG UNIVERSITY

Elastic Recaching with Hash Ring

PFS

HVAC
Server 1

HVAC
Client

DL App

HVAC
Server 2

E

HVAC
Client

DL App

HVAC
Server 3

HVAC
Client

DL App

E
6. Reads from PFS

(1)

(2)

E

7. Recache

ά/ƻǇȅ ǘƘŜ Řŀǘŀ ǘƻ NVMe in the
ōŀŎƪƎǊƻǳƴŘέ

38

Design

SOGANG UNIVERSITY

Elastic Recaching with Hash Ring

PFS

HVAC
Server 1

HVAC
Client

DL App

HVAC
Server 2

HVAC
Client

DL App

HVAC
Server 3

HVAC
Client

DL App

39

Design

SOGANG UNIVERSITY

Evaluation

40

SOGANG UNIVERSITY

Node Failure Analysis on Frontier

ÅAnalyzed job scheduler logs for six months following the production
launch of the ORNL s Frontier cluster
ÅFocused on three types of job failures: ɈJob Failɉ, ɈNode Failɉ, and
ɈTimeoutɉ.

ÅJob Fail: Due to code errors,
data/environment issues, or external
malfunctions.

ÅNode Fail: Caused by hardware,
network, software bugs, or overload.

ÅTimeout: Job exceeded set time limit,
often due to complexity or
resource/network constraints.

41

Evaluation

SOGANG UNIVERSITY

Node Failure Analysis on Frontier

ÅAverage Runtime of Failed Jobs on Frontier

ÅFailed jobs typically run for an
average of over 1 hour ,
sometimes reaching 2-3 hours.

ÅLong-running job failures Ą
significant loss of computing
resources and time.

ÅJob failures have occurred
consistently on a weekly basis.

42

Evaluation

SOGANG UNIVERSITY

Node Failure Analysis on Frontier

ÅRelationships between types of job failures and system variables.

Å(a) As the number of nodes
increases , the rate of "Node
Failures" also rises.

ÅE.g. With 7,750ɀ9,300 nodes,
"Node Failures" are 46.04% of
failures; including "Timeouts,"
they total 78.60%.

Å(b) Execution time does not
significantly impact the
proportion of failure types.

43

Evaluation

SOGANG UNIVERSITY

Node Failure Analysis on Frontier

ÅRelationships between types of job failures and system variables.

Å(a) As the number of nodes
increases , the rate of "Node
Failures" also rises.

ÅE.g. With 7,750ɀ9,300 nodes,
"Node Failures" are 46.04% of
failures; including "Timeouts,"
they total 78.60%.

Å(b) Execution time does not
significantly impact the
proportion of failure types.

Failures are highly frequent in large -scale HPC systems,
Software systems that are not designed to handle such failures are especially

vulnerable, often resulting in significant, unavoidable losses
44

Evaluation

SOGANG UNIVERSITY

Experimental Setup

ÅApplication: Cosmoflow - MLPerf
HPC v0.5 benchmark
ÅFramework: Horovod Elastic Run
ÅDataset: 1.3TB cosmoUniverse

dataset from NERSC ExaLearn
group (524,288 training samples,
65,536 validation samples).
ÅFile System: Orion (Lustre).
ÅTraining Setup: 5 epochs, with 5

random failures injected after the
first epoch.

45

Evaluation

