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Parameter update

Model Replication

Distributed Deep Learningin HPC

ÅThe Data Parallel Approach 
ÅReplicates the deep learning model across nodes while distributing 

the training dataset among all nodes.
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Distributed Deep Learningin HPC

ÅThree key aspects of Distributed Deep Learning
ÅI/O , Computation, Communication

ÅMost prior research efforts have concentrated on improving computation 
and communication.
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[1] N. Dryden, R. Böhringer , T. Ben-Nun, and T. Hoefler , "Clairvoyant Prefetching for Distributed Machine Learning I/O," Proceedings of the International 
Conference for High Performance Computing, Networking, Storage and Analysis (SC '21), 2021.

Distributed Deep Learningin HPC

ÅHowever, the optimizations in computation and communication, along 
with the development of modern computational accelerators and 
network technologies, have shifted the bottleneck towards I/O.
ÅI/O accounts for 67 -85% of total training time [1] .
ÅTraining ResNet50 on ImageNet: 85% of training runtime is IO overhead

67-85% of I/O

Computation

Computation
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Characteristics of Deep Learning Image Dataset

ÅɈLarge Number of Small Filesɉ
ÅImageNet -1K: 1.28 million images (-150KB)
ÅImageNet -21K: 11 million images (-163KB)
ÅOpenImages : 9 million images (-150KB)
ÅGoogle Landmarks Dataset v2: 5 million images (-200KB)
ÅPlaces365: 10 million images (-150KB)

ÅThe HPC I/O subsystem is not designed to efficiently handle the large -
scale data I/O access required by deep learning frameworks.
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[2] Y. Zhu, "Entropy -Aware I/O Pipelining for Large -Scale Deep Learning on HPC Systems," Proceedings of the IEEE 26th Internatio nal Symposium on Modeling, 
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), 2018.

Optimizing I/O for Deep Learning Workloads

ÅNoPFS[1]

ÅOptimizes prefetching and caching by predicting data access patterns, reducing 
latency in training I/O.

ÅDeepIO[2]

ÅMinimizes backend storage reads by keeping data in memory, focusing on reducing 
read latency and boosting I/O efficiency for distributed training.

ÅHVAC[3]

ÅCaches data on node -local NVMe, specifically reducing repetitive I/O reads during 
training.

[3] A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and F. Wang, "HVAC: Removing I/O Bottleneck for Large -Scale Deep Learning Applications," 
Proceedings of the IEEE International Conference on Cluster Computing (Cluster), 2022.
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HVAC: High-Velocity AI Cache

ÅHVAC, a transparent read -only caching layer for large -scale supercomputers using 
node-local NVMe.
ÅScalability
ÅDesigned to scale across thousands of compute nodes on leadership -class 

supercomputers like Summit and Frontier.
ÅAvoids additional metadata bottlenecks and storage overhead.

ÅClient -Server Library Architecture 
ÅIntercepts <open -read -close> file I/O operations via LD_PRELOAD using a shared 

library approach.
ÅData is cached to distributed node -local storage.
ÅUtilizes distributed hashing to determine the location of cached content across 

nodes. Ą No Repeated Access to PFS
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HVAC Overview

ÅHVAC Server
ÅBuilds a caching layer on node-local fast 

storage.
ÅHandles system calls forwarded by HVAC 

clients.
ÅReads files from node -local storage if 

available, or retrieves files from the PFS and 
caches them to node -local storage.

ÅHVAC Client
ÅIntercepts system calls directed to the PFS 

and redirects  them to the HVAC server.
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[4] B. Schroeder and G. A. Gibson, "A Large-Scale Study of Failures in High-Performance Computing Systems," IEEE Transactions on Dependable and Secure Computing, vol. 7, no. 4, pp. 
337-350, Oct.-Dec. 2010.

Increasing Node Failures in HPC and AI Workloads

ÅNode Failure Rates Rise with Complexity
ÅLarger, more complex HPC systems have higher node 

failure rates.
ÅFailure rates scale with system size, increasing linearly as 

more processors are added [4] .

ÅIntensive Workloads Increase Failure Probability
ÅHigh -demand tasks, such as large -scale deep learning 

jobs, also increase the risk of failure.
ÅRunning multiple nodes for deep learning exacerbates 

the likelihood of failure event.
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Increasing Node Failures in HPC and AI Workloads

ÅNode Failure Rates Rise with Complexity
ÅLarger, more complex HPC systems have higher node 

failure rates.
ÅFailure rates scale with system size, increasing linearly as 

more processors are added [4] .

ÅIntensive Workloads Increase Failure Probability
ÅHigh -demand tasks, such as large -scale deep learning 

jobs, also increase the risk of failure.
ÅRunning multiple nodes for deep learning exacerbates 

the likelihood of failure event.

However, HVAC currently lacks fault tolerance support , which 
limits its resilience in handling node failures.

12[4] B. Schroeder and G. A. Gibson, "A Large-Scale Study of Failures in High-Performance Computing Systems," IEEE Transactions on Dependable and Secure Computing, vol. 7, no. 4, pp. 
337-350, Oct.-Dec. 2010.
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Failures in HVAC

ÅEven a single node failure can halt the entire training process, 
despite fault-tolerance support in the DL framework.

ÅE.g. Elastic Scaling -  Horovod Elastic Run, MPI ULFM

ÅThis happens because I/O flows are controlled by HVAC.
Ą The job must be restarted.
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Therefore, it is crucial to ensure fault tolerance in the HVAC 
layer  to prevent training interruptions!
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Naïve Approach

ÅBecause HVAC functions as a caching layer, the original data 
resides in the PFS.
ÅI/O requests to failed nodes Ą redirected to PFS!
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I/O Redirection to PFS

PFS

HVAC 
Server 1

HVAC 
Client

DL App

HVAC 
Server 2

HVAC 
Client

DL App

HVAC 
Server 3

HVAC 
Client

DL App

Redirection to 

PFS

άŦŀƛƭǳǊŜέ

16

Background



SOGANG UNIVERSITY

Limitations of PFS I/O Redirection

Å22 mins per epoch x 5 epochs Ą 
nearly 2 hours  
ÅPartial data reads from PFS still 

cause delays
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* The data is from A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and F. Wang, "HVAC: Removing I/O Bottleneck for  Large-Scale Deep Learning 
Applications," Proceedings of the IEEE International Conference on Cluster Computing (Cluster), 2022. 
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Limitations of PFS I/O Redirection

Å22 mins per epoch x 5 epochs Ą 
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synchronization at each iteration 
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Limitations of PFS I/O Redirection
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Re-caching Mechanism
Read from PFS once, then access re -cached data for future requests
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Challenge: Handling Data Redistribution

ÅOriginal HVAC Implementation - Static Hash Partitioning
ÅData paths are converted to key values and distributed across nodes using a modulo 

operation.
ÅOn node failure, recalculating hash values for Nɩ1 nodes causes extensive data 

redistribution.

PFS PFS
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Challenge: Handling Data Redistribution

ÅAdditional Hash Functions
ÅReduces data movement but doesn t address multiple unpredictable failures

ÅRange Partitioning
ÅCan handle multiple node failures, but balancing data distribution remains 

challenging.

ά[ƻŀŘ LƳōŀƭŀƴŎŜέ
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Problem Definition

ÅHow can we track data locations  that change after re -caching?
ÅHow can we redistribute  lost data evenly  across remaining active nodes?
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Design & Implementation
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Design of FT-HVAC

ÅFT-HVAC: An I/O accelerated caching framework with fault 
tolerance for large -scale distributed deep learning.

25
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Design of FT-HVAC

ÅFT-HVAC: An I/O accelerated caching framework with fault 
tolerance for large -scale distributed deep learning.

1. Enable fault tolerance in HVAC.
2. Implement data recaching within the HVAC layer to ensure 

data availability and quick access during node failures.
3. Achieve load -balanced data recaching.
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Elastic Recaching with Hash Ring

ÅHash Ring Mechanism
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Elastic Recaching with Hash Ring
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Elastic Recaching with Hash Ring
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Elastic Recaching with Hash Ring
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Elastic Recaching with Hash Ring
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Elastic Recaching with Hash Ring
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Elastic Recaching with Hash Ring
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Evaluation
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Node Failure Analysis on Frontier

ÅAnalyzed job scheduler logs for six months following the production 
launch of the ORNL s Frontier cluster
ÅFocused on three types of job failures: ɈJob Failɉ, ɈNode Failɉ, and 
ɈTimeoutɉ.

ÅJob Fail: Due to code errors, 
data/environment issues, or external 
malfunctions.

ÅNode Fail: Caused by hardware, 
network, software bugs, or overload.

ÅTimeout: Job exceeded set time limit, 
often due to complexity or 
resource/network constraints.
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Node Failure Analysis on Frontier

ÅAverage Runtime of Failed Jobs on Frontier

ÅFailed jobs typically run for an 
average of over 1 hour , 
sometimes reaching 2-3 hours.

ÅLong-running job failures Ą 
significant loss of computing 
resources and time.

ÅJob failures have occurred 
consistently  on a weekly basis.
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Node Failure Analysis on Frontier

ÅRelationships between types of job failures and system variables.

Å(a) As the number of nodes 
increases , the rate of "Node 
Failures" also rises.

ÅE.g. With 7,750ɀ9,300 nodes, 
"Node Failures" are 46.04% of 
failures; including "Timeouts," 
they total 78.60%.

Å(b) Execution time does not 
significantly impact the 
proportion of failure types.
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Node Failure Analysis on Frontier

ÅRelationships between types of job failures and system variables.

Å(a) As the number of nodes 
increases , the rate of "Node 
Failures" also rises.

ÅE.g. With 7,750ɀ9,300 nodes, 
"Node Failures" are 46.04% of 
failures; including "Timeouts," 
they total 78.60%.

Å(b) Execution time does not 
significantly impact the 
proportion of failure types.

Failures are highly  frequent  in large -scale HPC systems,
Software systems that are not designed to handle such failures are especially 

vulnerable, often resulting in significant, unavoidable losses
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Experimental Setup

ÅApplication: Cosmoflow - MLPerf  
HPC v0.5 benchmark
ÅFramework: Horovod  Elastic Run
ÅDataset: 1.3TB cosmoUniverse  

dataset from NERSC ExaLearn 
group (524,288 training samples, 
65,536 validation samples).
ÅFile System: Orion ( Lustre ).
ÅTraining Setup: 5 epochs, with 5 

random failures injected after the 
first epoch.
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