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Distributed Deep Learning HPC

AThe Data Parallel Approach

AReplicates the deep learning model across nodes while distributing
the training dataset among all nodes. Parameter update

Data Set

Backend Communication

Model Replication
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Distributed Deep Learning HPC

AThree key aspects of Distributed Deep Learning

A 1/0, Computation, Communication

AMost prior research efforts have concentrated on improving computation
and communication.

Communication { | Backend Communication

—

Parameter update

Computation =

Compute Ngde Compute Node | Compute Ngde
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Data I/ 4 Data 1/0O
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Distributed Deep Learning HPC

AHowever, the optimizations in computation and communication, along
with the development of modern computational accelerators and
network technologies, have shifted the bottleneck towards 1/O.

Al/O accounts for 67 -85% of total training time [

A Training ResNet50 on ImageNet: 85% of training runtime is 10 overhead

Computation

Computation

67-85% of I/0

[1] N. Dryden, R. Boéhringer , T. Ben-Nun, and T. Hoefler , "Clairvoyant Prefetching for Distributed Machine Learning 1/0," Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (SC '21), 2021.
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Background

Characteristics of Deep Learning Image Dataset

AdLarge Number of Small Fil esj

A ImageNet -1K: 1.28 million images (-150KB)

A ImageNet -21K: 11 million images (-163KB)

A Openlmages : 9 million images (-150KB)

A Google Landmarks Dataset v2: 5 million images (-200KB)
A Places365: 10 million images (-150KB)

AThe HPC I/0 subsystem is not designed to efficiently handle the large -
scale data I/O access required by deep learning frameworks.
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Optimizing 1/O for Deep Learning Workloads

ANoPFS1]

A Optimizes prefetching and caching by predicting data access patterns, reducing
latency in training 1/O.

ADeeplO]

A Minimizes backend storage reads by keeping data in memory, focusing on reducing
read latency and boosting 1/O efficiency for distributed training.

AHVAQS]

A Caches data on node -local NVMe, specifically reducing repetitive 1/O reads during
training.

[2] Y. Zhu, "Entropy -Aware I/O Pipelining for Large -Scale Deep Learning on HPC Systems," Proceedings of the IEEE 26th Internatio nal Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), 2018.

[3] A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and F. Wang, "HVAC: Removing I/O Bottleneck for Large -Scale Deep Learning Applications,"
Proceedings of the IEEE International Conference on Cluster Computing (Cluster), 2022.
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HVAC: HigiVelocity Al Cache

AHVAG a transparent read -only caching layer for large -scale supercomputers using
node-local NVMe

A Scalability

A Designed to scale across thousands of compute nodes on leadership  -class
supercomputers like Summit and Frontier.

A Avoids additional metadata bottlenecks and storage overhead.

AClient -Server Library Architecture
A Intercepts <open -read -close> file 1/O operations via LD_PRELOAMsing a shared
library approach.
A Data is cached to distributed node -local storage.

A Utilizes distributed hashing to determine the location of cached content across
O Anl%des. A No Repeated Access to PFS

RIDGE

National Laboratory




Background

HVAC Overview

AHVAC Server

A Builds a caching layer on node-local fast
storage.

A Handles system calls forwarded by HVAC
clients.

A Reads files from node -local storage if
available, or retrieves files from the PFS and
caches them to node -local storage.

AHVAC Client

A Intercepts system calls directed to the PFS
and redirects them to the HVAC server.

Compute Node 1 Compute Node 2

28
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Compute Node 3

(iONN Caffe

HVAC Client
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B HVAC Client HVAC Client |

E HVAC Server HVAC Server —

HVAC Server

_ Read Once (...)

...................................................................................................

Parallel File System (GPSF, Lustre, ...)

\___1 AI/ML Dataset . Cached Iltems
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Increasing Node Failures in HPC and Al Workloads

ANode Failure Rates Rise with Complexity

A Larger, more complex HPC systems have higher node
failure rates.

A Failure rates scale with system size, increasing linearly as
more processors are added .

Alntensive Workloads Increase Failure Probability

A m W ~ W7 -
. : 4\\'/,/A\\\'/f/; X%
High -demand tasks, such as large -scale deep learning RO,

7/

WAORHO O
\X Y/ N\ X/ N XA Y
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) S/ '\, ), S "\, 1)), \‘\, “4)
. . . . WA AR NAA, AX AT
jobs, also increase the risk of failure. 4:5~~"w SRR OKUA
RN 2R KR, ~ 2 — 200
A Running multiple nodes for deep learning exacerbates ROV OV ORI OV
g P P g R — I i S
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N ¥ “\
OO OO
S A AN A N

the likelihood of failure event. O

[4] B. Schroeder and G. A. Gibson, "A L&geale Study of Failures in Higarformance Computing SystemiEE Transactions on Dependable and Secure Compuating, no. 4, pp. 11
337-350, OctDec. 2010.
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Increasing Node Failures in HPC and Al Workloads

ANode Failure Rates Rise with Complexit = s ..

However, HVAC currently lacks fault tolerance support , which

limits its resilience in handling node failures.

[4] B. Schroeder and G. A. Gibson, "A L&geale Study of Failures in Higarformance Computing SystemiEE Transactions on Dependable and Secure Compuating, no. 4, pp. 12
337-350, OctDec. 2010.
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Background

Failures in HVAC

AEven a single node failure can halt the entire training process,
despite fault-tolerance support in the DL framework.

AE.g. Elastic Scaling - Horovod Elastic Run, MPI ULFM
AThis happens because 1/0 flows are controlled by HVAC.
A The job must be restarted.




Background By R

DISCOS 6
Failures in HVAC

AEven a single node failure can halt the entire training process,

Therefore, It Is crucial to ensure fault tolerance 1nthe HVAC
layer to prevent training interruptions!
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Naive Approach

ABecause HVAC functions as a caching layer, the original data
resides in the PFS.

Al/O requests to failed nodes A redirected to PFS!

HVAC HVAC HVAC
Server 1 Server 2 Server 3

NVMe Copy

Original Data

15
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/O Redirection to PFS

DL App DL App DL App

- o AVAC NMVAC NMVAC

Redirection to % Client Client
PFS

C

HVAC
Server 1

HVAC
Server 3

16



I Background leilz)s g
Limitations of PFS I/O Redirection

A22 mins.per epoch x 5 epochs A
nearly 2 haurs

APartial data reads from PFS still
cause delays

120

[ERN
o
o

5 _+ 22mins, 23%

60
40
20

Epoch time (mins)

o

PFS Epoch  NVMe Epoch

* The data is from A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and F. Wang, "HVAC: Removing 1/O Bottleneck for Large-Scale Deep Learning
Applications," Proceedings of the IEEE International Conference on Cluster Computing (Cluster), 2022.
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Limitations of PFS I/O Redirection
120
2100 e - AStraggler Problem: Even if a few
22 . 23% .

< o - 22mins, 23% nodes access PFS, deep learning

E 4o synchronization at each iteration

S 20 forces other nodes to wait A

Yoo reducing parallelism and

PFS Epoch  NVMe Epoch Scalabi”ty.

* The data is from A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and F. Wang, "HVAC: Removing 1/O Bottleneck for Large-Scale Deep Learning
Applications," Proceedings of the IEEE International Conference on Cluster Computing (Cluster), 2022.
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Limitations of PFS I/O Redirection

120

[ERN
o
o

5 _+ 22mins, 23%

60
40
20

Epoch time (mins)

o

PFS Epoch  NVMe Epoch

AJob Time Limitations:  Risk of
exceeding pre -defined job time.

* The data is from A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and F. Wang, "HVAC: Removing 1/O Bottleneck for Large-Scale Deep Learning
Applications," Proceedings of the IEEE International Conference on Cluster Computing (Cluster), 2022.
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Limitations of PFS I/O Redirection

R-eaching Mechanism
Read from PFS once, then access re -cached data for future requests

* The data is from A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and F. Wang, "HVAC: Removing 1/O Bottleneck for Large-Scale Deep Learning
Applications," Proceedings of the IEEE International Conference on Cluster Computing (Cluster), 2022.
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Challenge: Handling Data Redistribution

AOriginal HVAC Implementation - Static Hash Partitioning

A Data paths are converted to key values and distributed across nodes using a modulo
operation.

A On node failure, recalculating hash values for N hodes causes extensive data
redistribution.

EREEcsER Np

21
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Challenge: Handling Data Redistribution

A Additional Hash Functions

AReducesVMdat aVmovement Mbut Mdoesn tVMaddr ess\Nr

ARange Partitioning

A Can handle multiple node failures, but

challenging.

—

0O

Y

balancing data distribution  remains
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Problem Definition

AHow can we track data locations that change after re -caching?
AHow can we redistribute lost data evenly across remaining active nodes?
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Design of FHVAC

AFT-HVAC:AnN 1/0 accelerated caching framework — with fault
lolerance for large -scale distributed deep learning.

25



Design of FHVAC

AFT-HVAC:An 1/O accelerated caching framework  with fault
lolerance for large -scale distributed deep learning.

1. Enable fault tolerance In HVAC.

2. Implement data recaching within the HVAC layer to ensure
data availability and quick access during node failures.

3. Achieve load -balanced data recaching.

26
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Elastic Recaching with Hash Ring

AHash Ring Mechanism

0.0

B \A Node Table
Node O 0.00C " 0.500
JIE Node 1 @ 0.375@ 0.875

0.375
Cl 5 Node 2 @ 0.12:@ 0.625
0.5 Virtual nodes
<Before Failure>

DI/S’C?)S g

Hash Table

File A 0.083427

D @D
File E  0.293853

27
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Elastic Recaching with Hash Ring

AHash Ring Mechanism

0.0
Hash Table
8 \A Node Table
Node O ¢ 0.00C"" 0.500 File A 0.083427
JIE Node 1 @ 0.37:@ 0.875 @ <@
0.375 )
C Node 2 @ 0.12:@ 0.625 02938555 @
D | E—
0.5 Virtual nodes
<Before Failure>
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Elastic Recaching with Hash Ring

AHash Ring Mechanism

ACIAfdzNB |41 b2RS méE

0.0
Hash Table
8 \A Node Table
Node 0 ¢ 0.000°" 0.500 File A 0.083427
/ ode1 @ 0.37:@ 0.875 «@ «@
Cl 5 0-375 Node 2 @ 0.125@® 0.625 File E  0.293853
0.5 Virtual nodes
<Before Failure>
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Elastic Recaching with Hash Ring

AHash Ring Mechanism

Node Table Hash Table

Node 0 @ 0.000® 0500  FileA 0.083427
—Note-=@=0-97:@-0-67%> @
Node 2 @ 0.12:@ 0.625 0.293858mp

Virtual nodes

<After Failure>
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Elastic Recaching with Hash Ring

0.0

1. Read
request
o A DL App DL App DL App
ALY USNDS Q /
rnvAC rnMvAC nMvVAC
Client Client Client
DI
0.5
HVAC HVAC HVAC
Server 1 Server 2 Server 3
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Elastic Recaching with Hash Ring

2. Request to
Server

DL App

AVAC

e

DL App

DL App

NMVAC

NMVAC

Client

HVAC
Server 1

I

Client

HVAC
Server 2

HVAC
Server 3

0.0

DI/S’C?OS g
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Elastic Recaching with Hash Ring

3. Timed out

DL App

e

AVAC

DL App

DL App

NMVAC

Client

NMVAC

Client

HVAC
Server 1

"

HVAC
Server 2

HVAC
Server 3

[

AFI Af dzZNB €

PFS

DI/S’C?OS g

0.0
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Elastic Recaching with Hash Ring

3. Timed out

DL App

AVAC

DI/S’C?OS g

0.0

DL App DL App

NMVAC NMVAC

Client

| FVAC
Serveir 3

>

—

1

O

AFI Af dzZNB €

PFS
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Elastic Recaching with Hash Ring

4. Retry hash

calculation

DL App

AVAC

Clignt

DL App

NMVAC

Client

DL App

Server 1

NMVAC

Client

HVAC
Server 2

HVAC
Server 3

DI/S’C?OS g

0.0

>
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Elastic Recaching with Hash Ring

DL App DL App &%1\
ol

DL App
rnvAC rnMvAC

Clignt Client Client

ﬁc HVAC HVAC
5. Checks the Server 1 Server 2 . Server 3 .
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Elastic Recaching with Hash Ring

DL App

AVAC

Chent

DL App

NMVAC

Client

DL App

HVAC
Server 1

NMVAC

Client

HVAC
Server 2

HVAC
Server 3

W
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0.0
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Elastic Recaching with Hash Ring

0.0

DL App DL App DL App \%
nMvAC nMVAC nMVAC /- '
0.5

Chent Client Client

HVAC
Server 1

HVAC
Server 2

G/ 2L O KNS/Mdrtthel
6. Reads from PFS | ol O1 3ANR dzy

HVAC
Server 3

.
____________
-
R
’
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Elastic Recaching with Hash Ring

DL App

AVAC

DL App

NMVAC

Client

Server 1

(. HVAC

A 1

Server 3

RER

0.0

>
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Evaluation

Node Failure Analysis on Frontier

AAnalyzed job scheduler logs for six months following the production
| aunchVofMdt heVORNL sMFrontierVMcl uster

AFocused on three types of job failures: 3Job Failj,and Node F
3 TIi meout

A Job Fail: Due to code errors,

Type Count Failure ratio Overall ratio . :
data/environment issues, or external
Total Jobs 181,933 N/A 00% malfunctions.
Total Failures 45,556 100% 25.04% _
SO P o e A Node Fail: Caused by hardware,
0ode rai 5 . (o) s (¥
i 20464  44.92% 11.25% network, software bugs, or overload.
Job Fail 23,918  52.50% 13.15% A Timeout; Job exceeded set time limit,

often due to complexity or
resource/network constraints.
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Node Failure Analysis on Frontier
AAverage Runtime of Failed Jobs on Frontier
200 T OB FAIL —>-NDODE FAIL A Failed jobs typically run for an

TIMEOUT ---Overall average a"erage of over 1_ hour,
sometimes reaching 2-3 hours.

(G

(9,1

e
l

A Long-running job failures A
significant loss of computing
resources and time.

W
-
]

A Job failures have occurred
consistently on a weekly basis.

Avg. Elapsed Time (Mins)
=
T

)

| |
1 6 11 16 21 26
Week Number
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Node Failure Analysis on Frontier

ARelationships between types of job failures and system variables.

[ JOB_FAIL TIMEOUT ESN NODE_FAIL [ JOB_FAIL 2 TIMEOUT ISl NODE_FAIL A (a) As thenumber of nodes

:OO 7/ 100_7 /7 > / inc_rease"s , the rate of "Node
3\"/75' % % / 757 % % % % / % Failures" also rises.
050-/'/// / 50-////// .0. Wit nodes
Ml 1L LI L] ] | e
NiSINiNi=ininignl | 1L Isl |IEEECTCEL Rt
> ﬁ:mf:r Obf@N o‘jes i3 s DTi:?e (,\L:ins)bb a A (b) Execution time does not

. . significantly impact the
(a) Node Scaling Impact (b) Runtime Impact proportion of failure types.
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Node Failure Analysis on Frontier

ARelationships between types of job failures and system variables.

1 JOB.FAIL 72 TIMEOUT BN NODE_FAIL [ JOB.FAIL &z TIMEOUT B NoDEFAIL A (a) As thenumber of nodes
1007 7 i "
100 increases, the rate of "Node

.l POOOBY| oo,

575 // / 75 / / / / / / Failures" also rises.

Sl VIVIEL L] ] | e

= % 7 2 % é %// % // // failures; including "Timéout()s,"
0 S G G G G O——T—— 71— 1 — T — T —T_ they total 78.60%.

Failures are highly frequent in large -scale HPC systems,

Software systems that are not designed to handle such failures are especially
vulnerable, often resulting in significant, unavoidable losses
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Experimental Setup
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A Application: Cosmoflow - MLPerf
HPC v0.5 benchmark

A Framework: Horovod Elastic Run

A Dataset: 1.3TB cosmoUniverse
dataset from NERSC Exalearn
group (524,288 training samples,
65,536 validation samples).

A File System: Orion ( Lustre).

A Training Setup: 5 epochs, with 5
random failures injected after the
first epoch.



