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I/O Analysis Cycle

• Optimizing I/O efficiency has become essential for 
maximizing productivity as scientific workloads on 
HPC systems become increasingly data-intensive

• The go-to solution: I/O Analysis

• Involves gathering I/O traces and examining patterns 
to detect anomalies

• Existing I/O analysis tools utilize data drilling to 
identify I/O bottlenecks within trace data that can fit 
in memory

• Recently, traces from scientific workloads have 
reached terabytes in size, necessitating out-of-core 
analysis
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“data drilling”: Iterative 

exploration of data for 

deeper insights

“out-of-core analysis”: 

Analysis of data too large to 

fit in memory by means of 

distributed computing



State-of-the-art

• Currently, I/O analysis is conducted using various tools, including

• Profiling/Tracing: Darshan, Recorder, DLIO Profiler

• Analysis: PyDarshan, Drishti, DXT Explorer, Recorder-viz

• Studies mostly rely on these tools to detect I/O problems, for instance

• UMAMI [1], TOKIO [2], IOMiner [3]: System-wide, Darshan, Pandas, In-memory

• Extracting and characterizing I/O behavior of HPC workloads [4]: Workflow-level, Recorder, Parquet, Out-of-core
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Challenges

• I/O analysis on large-scale I/O traces, involving data drilling, is a complex task that faces three major challenges:
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Lack of global query 
optimization

Inefficient slicing and 
grouping

Analyzing terabyte-scale 
I/O traces



Challenges

• As the volume of traces generated by scientific workloads has grown to terabytes in size, there is an increasing 
need for out-of-core I/O analysis

• For instance, traces from DLIO Benchmark [5] for a TensorFlow workload reaches 5TB in size

• Accesses 5376 files of 132MB in size, 4 read threads, 1000 epoch

• Calculating the unoverlapped I/O requires efficient slicing and grouping in async I/O scenarios
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Challenges

• Typical queries to analyze this trace would look like the following in SQL
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# Total I/O size by each thread within a specific time
SELECT SUM(size) FROM traces WHERE time > ‘01:50’ and time < ‘01:53’ GROUP BY thread_id

# Aggregated I/O BW per process within a specific time
SELECT SUM(size)/SUM(duration) FROM traces WHERE time > ‘01:50’ and time < ‘01:53’ GROUP BY process_id



Solution: IOMax

• The IOMax tool is aimed at enhancing the efficiency 
of data drilling analysis on large-scale I/O traces

• It has three main components

• DatasetValidator

• DatasetTransformer

• QueryEngine
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IOMax → DatasetValidator

• Detects issues within the I/O traces

• Misinferred datatypes

• Inefficient datatypes

• Encoding issues (binary/string)

• For instance

• I/O Category and Access Pattern columns are among 
commonly misinferred datatypes

• String columns are highly inefficient for analysis, both 
when storing and querying them
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IOMax → DatasetTransformer

• Corrects misinferred datatypes by converting them 
into the expected datatypes

• For instance

• I/O Category and Access Pattern columns usually have 
limited set of values, hence can be transformed into 
more efficient datatypes

• Strings columns such as File and Process Names can 
be encoded as integers values through hashing

4/24/2024 11

Categorical data 
columns in I/O 

trace

Boolean 
encoding when 

needed

Categorical 
encoding when 

needed

Reduction varies due 
to variable length 
nature of string 

columns



IOMax → QueryEngine

• Constructs an execution plan that leverages query 
reduction and in-memory caching techniques to 
minimize redundant I/O costs
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# Total I/O size by each thread within a specific time
SELECT SUM(size) FROM traces WHERE time > ‘01:50’ and time < ‘01:53’ GROUP BY thread_id

# Aggregated I/O BW per process within a specific time
SELECT SUM(size)/SUM(duration) FROM traces WHERE time > ‘01:50’ and time < ‘01:53’ GROUP BY process_id

Group “time ranges” with the 
expected time resolution out 

of time-based slicing

Merge grouping queries via the 
aggregate view to avoid 

redundant access to the same 
data

Determine appropriate 
aggregation methods for the 

metrics accessed



Evaluations

• Workloads

• Microbenchmarks utilizing varied I/O trace records

• 5 million, 25 million, 125 million

• Derived from real-world I/O traces

• 4 scientific HPC workflows

• 1000 Genomes, Montage (in this presentation)

• HACC, CM1 (in the paper)

4/24/2024 13

• Hardware

• Lassen supercomputer at LLNL

• IBM Power9 CPU, 256GB RAM

• IBM Spectrum Scale FS (GPFS)

• Software

• Pandas (Data analysis library)

• Utilized for in-memory analysis

• Dask (Distributed computing library)

• Utilized for out-of-core analysis

• Pandas compatible APIs

• Recorder (I/O tracing library)

• Provides fine-grained I/O events

Workload # of Records # of Files # of Processes Size

1000 Genomes 715,248,240 21,268,291 2,712 440GB

Montage 12,346,353 19,680 11,488 30GB



Evaluations → Data Reduction

• 10 real-world I/O analysis queries are executed 
against datasets to showcase the effects of 
independent query treatment and the increasing 
memory footprint

• The execution time of the unoptimized queries 
increases linearly, ~6x per scale, while optimized 
version scales well

• The optimized version has a memory footprint that 
is 8.5x smaller than the unoptimized version

4/24/2024 14

Pandas fails to load traces in 
memory

8.5x



Evaluations → Iterative Queries

• Performing I/O analysis and data drilling involves 
iterative operations. Typically, this is part of the 
analysis process. In our case, we offloaded these 
iterative operations to our preprocessor 
(DatasetTransformer), which is written in C

• The findings reveal a linear increase in Python’s 
iteration time, ~5x per scale

• In contrast, C exhibits a constant iteration time, 
averaging around 50 ms
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Evaluations → Datatype Performance

• Range queries were executed on both string and 
integer indices to identify the top ⅛, ¼, and ½ of the 
most accessed files 

• Our DataTransformer transforms string columns 
like filename into integer through hashing

• Accessing subsets with string indices exhibits a linear 
increase in access time relative to the number of 
files, resulting in an 11.4x slower performance

• In contrast, integer indices shows a nearly constant 
access time, averaging around 15µs

• String indices incur a memory footprint 13.1x larger 
than that of integer indices
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13.1x



Evaluations → Scientific Workflows

• 10 real-world I/O analysis queries were executed 
against the I/O traces of Montage and 1000 
Genomes to illustrate the overall benefits derived 
from our methodology

• The finding show that IOMax improves the analysis  
performance up to 7x for large-scale I/O traces

• Additionally, it reduces the memory footprint of 
queries by 3x
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3x



Conclusion

Our query optimizations achieve 
up to 8.6x performance 

improvement and an 11x 
reduction in memory usage
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Lack of global query 
optimization

Inefficient slicing and 
grouping

Analyzing terabyte-scale 
I/O traces

Our data transformer improves 
data-slicing performance by 

11.4x

Our methodology improves 
real-world large-scale I/O 

analysis performance by 7x 



Thank you!

Any questions?
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