
IOMax: Maximizing Out-of-Core I/O Analysis
Performance on HPC Systems

Izzet Yildirim1, Hariharan Devarajan2, Anthony Kougkas1, Xian-He Sun1, Kathryn Mohror2

iyildirim@hawk.iit.edu, hariharandev1@llnl.gov, akougkas@iit.edu, sun@iit.edu, kathryn@llnl.gov

1Illinois Institute of Technology, 2Lawrence Livermore National Laboratory

4/24/2024 1

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under C ontract DE-AC52-07NA27344. This
material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research under the DOE Early

Career Research Program (LLNL-PRES-857387). Also, the material is based upon work supported by the National Science Foundation under Grant no. NSF OAC-2104013,
OCI-1835764, and CSR-1814872.

mailto:iyildirim@hawk.iit.edu
mailto:hariharandev1@llnl.gov
mailto:akougkas@iit.edu
mailto:sun@iit.edu
mailto:kathryn@llnl.gov

I/O Analysis Cycle

• Optimizing I/O efficiency has become essential for
maximizing productivity as scientific workloads on
HPC systems become increasingly data-intensive

• The go-to solution: I/O Analysis

• Involves gathering I/O traces and examining patterns
to detect anomalies

• Existing I/O analysis tools utilize data drilling to
identify I/O bottlenecks within trace data that can fit
in memory

• Recently, traces from scientific workloads have
reached terabytes in size, necessitating out-of-core
analysis

4/24/2024 2

I/O Trace
Collection

I/O AnalysisI/O
Optimization

↓ Query Execution
 Data Drilling

↓ Visualization

I/O Analysis Cycle

• Optimizing I/O efficiency has become essential for
maximizing productivity as scientific workloads on
HPC systems become increasingly data-intensive

• The go-to solution: I/O Analysis

• Involves gathering I/O traces and examining patterns
to detect anomalies

• Existing I/O analysis tools utilize data drilling to
identify I/O bottlenecks within trace data that can fit
in memory

• Recently, traces from scientific workloads have
reached terabytes in size, necessitating out-of-core
analysis

4/24/2024 3

“data drilling”: Iterative

exploration of data for

deeper insights

“out-of-core analysis”:

Analysis of data too large to

fit in memory by means of

distributed computing

State-of-the-art

• Currently, I/O analysis is conducted using various tools, including

• Profiling/Tracing: Darshan, Recorder, DLIO Profiler

• Analysis: PyDarshan, Drishti, DXT Explorer, Recorder-viz

• Studies mostly rely on these tools to detect I/O problems, for instance

• UMAMI [1], TOKIO [2], IOMiner [3]: System-wide, Darshan, Pandas, In-memory

• Extracting and characterizing I/O behavior of HPC workloads [4]: Workflow-level, Recorder, Parquet, Out-of-core

4/24/2024 4

Challenges

• I/O analysis on large-scale I/O traces, involving data drilling, is a complex task that faces three major challenges:

4/24/2024 5

Lack of global query
optimization

Inefficient slicing and
grouping

Analyzing terabyte-scale
I/O traces

Challenges

• As the volume of traces generated by scientific workloads has grown to terabytes in size, there is an increasing
need for out-of-core I/O analysis

• For instance, traces from DLIO Benchmark [5] for a TensorFlow workload reaches 5TB in size

• Accesses 5376 files of 132MB in size, 4 read threads, 1000 epoch

• Calculating the unoverlapped I/O requires efficient slicing and grouping in async I/O scenarios

4/24/2024 6

I/
O

 o
p

er
at

io
n

s

Challenges

• Typical queries to analyze this trace would look like the following in SQL

4/24/2024 7

Total I/O size by each thread within a specific time
SELECT SUM(size) FROM traces WHERE time > ‘01:50’ and time < ‘01:53’ GROUP BY thread_id

Aggregated I/O BW per process within a specific time
SELECT SUM(size)/SUM(duration) FROM traces WHERE time > ‘01:50’ and time < ‘01:53’ GROUP BY process_id

Solution: IOMax

• The IOMax tool is aimed at enhancing the efficiency
of data drilling analysis on large-scale I/O traces

• It has three main components

• DatasetValidator

• DatasetTransformer

• QueryEngine

4/24/2024 9

IOMax → DatasetValidator

• Detects issues within the I/O traces

• Misinferred datatypes

• Inefficient datatypes

• Encoding issues (binary/string)

• For instance

• I/O Category and Access Pattern columns are among
commonly misinferred datatypes

• String columns are highly inefficient for analysis, both
when storing and querying them

4/24/2024 10

IOMax → DatasetTransformer

• Corrects misinferred datatypes by converting them
into the expected datatypes

• For instance

• I/O Category and Access Pattern columns usually have
limited set of values, hence can be transformed into
more efficient datatypes

• Strings columns such as File and Process Names can
be encoded as integers values through hashing

4/24/2024 11

Categorical data
columns in I/O

trace

Boolean
encoding when

needed

Categorical
encoding when

needed

Reduction varies due
to variable length
nature of string

columns

IOMax → QueryEngine

• Constructs an execution plan that leverages query
reduction and in-memory caching techniques to
minimize redundant I/O costs

4/24/2024 12

Total I/O size by each thread within a specific time
SELECT SUM(size) FROM traces WHERE time > ‘01:50’ and time < ‘01:53’ GROUP BY thread_id

Aggregated I/O BW per process within a specific time
SELECT SUM(size)/SUM(duration) FROM traces WHERE time > ‘01:50’ and time < ‘01:53’ GROUP BY process_id

Group “time ranges” with the
expected time resolution out

of time-based slicing

Merge grouping queries via the
aggregate view to avoid

redundant access to the same
data

Determine appropriate
aggregation methods for the

metrics accessed

Evaluations

• Workloads

• Microbenchmarks utilizing varied I/O trace records

• 5 million, 25 million, 125 million

• Derived from real-world I/O traces

• 4 scientific HPC workflows

• 1000 Genomes, Montage (in this presentation)

• HACC, CM1 (in the paper)

4/24/2024 13

• Hardware

• Lassen supercomputer at LLNL

• IBM Power9 CPU, 256GB RAM

• IBM Spectrum Scale FS (GPFS)

• Software

• Pandas (Data analysis library)

• Utilized for in-memory analysis

• Dask (Distributed computing library)

• Utilized for out-of-core analysis

• Pandas compatible APIs

• Recorder (I/O tracing library)

• Provides fine-grained I/O events

Workload # of Records # of Files # of Processes Size

1000 Genomes 715,248,240 21,268,291 2,712 440GB

Montage 12,346,353 19,680 11,488 30GB

Evaluations → Data Reduction

• 10 real-world I/O analysis queries are executed
against datasets to showcase the effects of
independent query treatment and the increasing
memory footprint

• The execution time of the unoptimized queries
increases linearly, ~6x per scale, while optimized
version scales well

• The optimized version has a memory footprint that
is 8.5x smaller than the unoptimized version

4/24/2024 14

Pandas fails to load traces in
memory

8.5x

Evaluations → Iterative Queries

• Performing I/O analysis and data drilling involves
iterative operations. Typically, this is part of the
analysis process. In our case, we offloaded these
iterative operations to our preprocessor
(DatasetTransformer), which is written in C

• The findings reveal a linear increase in Python’s
iteration time, ~5x per scale

• In contrast, C exhibits a constant iteration time,
averaging around 50 ms

4/24/2024 16

Evaluations → Datatype Performance

• Range queries were executed on both string and
integer indices to identify the top ⅛, ¼, and ½ of the
most accessed files

• Our DataTransformer transforms string columns
like filename into integer through hashing

• Accessing subsets with string indices exhibits a linear
increase in access time relative to the number of
files, resulting in an 11.4x slower performance

• In contrast, integer indices shows a nearly constant
access time, averaging around 15µs

• String indices incur a memory footprint 13.1x larger
than that of integer indices

4/24/2024 17

13.1x

Evaluations → Scientific Workflows

• 10 real-world I/O analysis queries were executed
against the I/O traces of Montage and 1000
Genomes to illustrate the overall benefits derived
from our methodology

• The finding show that IOMax improves the analysis
performance up to 7x for large-scale I/O traces

• Additionally, it reduces the memory footprint of
queries by 3x

4/24/2024 18

3x

Conclusion

Our query optimizations achieve
up to 8.6x performance

improvement and an 11x
reduction in memory usage

4/24/2024 20

Lack of global query
optimization

Inefficient slicing and
grouping

Analyzing terabyte-scale
I/O traces

Our data transformer improves
data-slicing performance by

11.4x

Our methodology improves
real-world large-scale I/O

analysis performance by 7x

Thank you!

Any questions?

4/24/2024 21

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under C ontract DE-AC52-07NA27344. This
material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research under the DOE Early

Career Research Program (LLNL-PRES-857387). Also, the material is based upon work supported by the National Science Foundation under Grant no. NSF OAC-2104013,
OCI-1835764, and CSR-1814872.

References

1. G. K. Lockwood et al., “UMAMI: a recipe for generating meaningful metrics through holistic I/O performance analysis,” in Proceedings of the
2nd Joint International Workshop on Parallel Data Storage & Data Intensive Scalable Computing Systems - PDSW-DISCS ’17, Denver, Colorado:
ACM Press, 2017, pp. 55–60. doi: 10.1145/3149393.3149395.

2. G. K. Lockwood, N. J. Wright, S. Snyder, P. Carns, G. Brown, and K. Harms, “TOKIO on ClusterStor: Connecting Standard Tools to Enable Holistic
I/O Performance Analysis,” Proceedings of the 2018 Cray User Group, 2018.

3. [1] T. Wang, S. Snyder, G. Lockwood, P. Carns, N. Wright, and S. Byna, “IOMiner: Large-Scale Analytics Framework for Gaining Knowledge from
I/O Logs,” in 2018 IEEE International Conference on Cluster Computing (CLUSTER), Belfast: IEEE, Sep. 2018, pp. 466–476. doi:
10.1109/CLUSTER.2018.00062.

4. H. Devarajan and K. Mohror, “Extracting and characterizing I/O behavior of HPC workloads,” in 2022 IEEE International Conference on Cluster
Computing (CLUSTER), Heidelberg, Germany: IEEE, Sep. 2022, pp. 243–255. doi: 10.1109/CLUSTER51413.2022.00037.

5. H. Devarajan, H. Zheng, A. Kougkas, X.-H. Sun, and V. Vishwanath, “DLIO: A Data-Centric Benchmark for Scientific Deep Learning Applications,”
in 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid), Melbourne, Australia: IEEE, May 2021,
pp. 81–91. doi: 10.1109/CCGrid51090.2021.00018.

4/24/2024 22

	Slide 1: IOMax: Maximizing Out-of-Core I/O Analysis Performance on HPC Systems
	Slide 2: I/O Analysis Cycle
	Slide 3: I/O Analysis Cycle
	Slide 4: State-of-the-art
	Slide 5: Challenges
	Slide 6: Challenges
	Slide 7: Challenges
	Slide 9: Solution: IOMax
	Slide 10: IOMax → DatasetValidator
	Slide 11: IOMax → DatasetTransformer
	Slide 12: IOMax → QueryEngine
	Slide 13: Evaluations
	Slide 14: Evaluations → Data Reduction
	Slide 16: Evaluations → Iterative Queries
	Slide 17: Evaluations → Datatype Performance
	Slide 18: Evaluations → Scientific Workflows
	Slide 20: Conclusion
	Slide 21
	Slide 22: References

