

Enhancing Metadata Transfer Efficiency: Unlocking the Potential of DAOS in the ADIOS context

Ranjan Sarpangala Venkatesh, Greg Eisenhauer*, Scott Klasky, Ada Gavrilovska

Exponential increase in amount of data

Focus on increasing I/O bandwidth and concurrency

Metadata costs have NOT received same attention

Background -ADIOS

I/O library

Scalable

Global Multidimensional Array

Timestep based

Timestep 1			Var A						
	0	1	2	3	4	5			
Metadata									
Rank 1 : VarA - [0,1] and [4,5								l,5]	
Rank 2 : VarA - [2,3]									
Timestep 2 Var A									
·	0	1	2	3	4	5			
Metadata									
Rank 1 : VarA - [0,3]									
Rank 2 : VarA - [4,5]									

🗖 Rank 1 🔲 Rank 2

ADIOS metadata transfer in a timestep

ADIOS metadata transfer in a timestep

E3SM Metadata Stabilization – Expensive?

DAOS APIs

• DAOS POSIX

DAOS Array- Dense

• DAOS Key Value

DAOS Array - Sparse

Design Options

(E3SM – 56KB) – Stabilization Time

- Stabilization time of E3SM is known to dominate overall time
- POSIX is unsustainable at scale
- KV more than 10X faster than POSIX

(E3SM – 56KB) – Acquisition Time

- Here KV is slower than Array and POSIX
- No single winner across stabilization and acquisition

(E3SM – 56KB) – End to End Time

- Both KV and Array are 2.75X faster POSIX
- DAOS objects a win for E3SM

Small Metadata Size (5KB) – Stabilization Time

- Array 10X slower than KV and worse than POSIX
- Uneven distribution of of metadata across
 DAOS targets
- For Array Data alignment matters

Small Metadata Size (5KB) – Stabilization Time(cont'd)

Array Chunk Aligned

- Careful alignment ensured improved metadata distribution
- 10X faster than Array
- No wasted Space

End to End transfer time

Stabilization Time: KV < Array Chunk Aligned Acquisition Time: KV >> Array Chunk Aligned

Conclusion

Clear Opportunity

- End to End Time DAOS Object APIs 2-3X faster than POSIX
- Preliminary work
- Multitude of Design Options
- More Design Options How to provide ADIOS timestep?
 - Extend existing objects
 - Snapshot and reuse objects
- Ongoing work Stay tuned!

Thank you