

Toward Open Object-Based Computational Storage For Analysis Query Pushdown

Qing Zheng, Jason Lee, Dominic Manno, Gary Grider, Los Alamos National Laboratory

11/12/23

LA-UR-23-32776

Managed by Triad National Security, LLC, for the U.S. Department of Energy's NNSA.

3 Things About Scientific Data Analytics

Moving data is expensive

Queries often target a tiny portion of a large

dataset

Query Pushdown Through Computational Storage

Data Agnostic vs Data Aware Offloads

Data Agnostic

- Storage does not know what's in the data (view data as byte streams)
 - Like what POSIX filesystems do today
- Example offloads: data compression, encryption, custom risc-v, eBPF functions

Data Aware

 Storage and apps agree on a data format (e.g., Apache Parquet) and a query format (e.g., Substrait)

This effort will use the data aware approach

Storage Interface: Block? KV? Object?

Block

• Best for data agnostic operations (compression, encryption)

KV

Best for **row-based** applications such as various PIC (particle-in-cell) codes

Object (each can be a Parquet fragment)

• Enable **columnar** analytics often seen in gridbased codes in addition to PIC codes Prior work at Los Alamos looked at these (ZIA, KV-CSD, C2) in collaboration with Aeon, Eideticom, Nvidia, SK hynix, Seagate

This effort will use objects

LANL/SK hynix Demo at Exhibition Hall

