
Accelerating Flash-X Simulations with Asynchronous I/O

Presenter: Rajeev Jain

Rajeev Jain*, Houjun Tang⧫, Akash Dhruv*, Austin Harris⦽, Suren Byna⧫

* Argonne National Lab
⧫ Lawrence Livermore National Lab
⦽ Oak Ridge National Lab

Contents

• Flash-X
• HDF5 Async IO
• Async IO Implementation
• Results
• Conclusions and Future Work

*SC22 | Dallas, TX | hpc accelerates. 2

Flash-X
• Highly scalable multiphysics simulation

code for heterogeneous compute
architecture

• Supports “uniform” and “adaptive”
mesh

• Primarily written in Fortran
• Component based code
• Eulerian base discretization
• AMR is used to:

• Reduce memory footprint
• Reduce computation

• Used for various simulations:
• Galaxy clusters to
• Turbulent Nuclear Burning

*SC22 | Dallas, TX | hpc accelerates. 3

Accelerating Flash-X with Asynchronous I/O

*SC22 | Dallas, TX | hpc accelerates. 4

• Previous Flash-X versions only supports synchronous HDF5 I/O

• I/O cost can be high with large scale simulation runs

• Asynchronous I/O that can overlap computation with I/O can reduce the runtime

HDF5 Asynchronous IO

• New async API introduced by HDF5 1.13

• Asynchronous I/O VOL connector (github.com/hpc-io/vol-async) enables:

• Transparent background thread execution of HDF5 I/O operations

• Overlaps I/O with computation to reduce the total application execution time

*SC22 | Dallas, TX | hpc accelerates. 5

https://github.com/hpc-io/vol-async

Async IO implementation in Flash-X

• Requires HDF5 1.13+, vol-async, and Argobots to be installed

• Flash-X async I/O can be turned on by add +hdf5async to the setup command

*SC22 | Dallas, TX | hpc accelerates. 6

...
/* create a parallel hdf5 dataset */

#ifdef FLASH_IO_ASYNC_HDF5
dataset = H5Dcreate_async(*file_identifier, record_label_new,

 H5T_NATIVE_DOUBLE, dataspace, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT, io_es_id);
#else

dataset = H5Dcreate(*file_identifier, record_label_new,
 H5T_NATIVE_DOUBLE, dataspace, H5P_DEFAULT,H5P_DEFAULT, H5P_DEFAULT);
#endif
...

Results: Sod

• Sod is a compressible flow explosion problem widely used
for verification of shock-capturing simulation codes.

• We used a 3D Sod problem with tracer particles.

• Each runs for 109 steps, writes a checkpoint file every 33
steps, a plot file every 10 steps, and compared the total
execution time with 5 different configurations that uses
Synchronous and Asynchronous I/O, with and without
MPI_THREAD_MULTIPLE, and using GPFS and UnifyFS.

• For cases with async, the majority of the write operations
are overlapping with Flash-X’s computation. Exceptions
include the initial data writes and the last step as there is
no computation to overlap with.

*SC22 | Dallas, TX | hpc accelerates. 7

Results: Streaming Sine Wave

• The streaming sine wave test problem is a test problem
for verifying the correctness of the streaming advection
operator in thornado as well as the Flash-X interface to
thornado.

• This problem uses GPU and CPU (threading).

• One GPU per MPI rank, and the data is copied from GPU
to CPU memory automatically by FLASH-X before being
written out

• At a higher number of nodes the interference between
COM_ time and IO_ is higher as the I/O time as a whole
increases: it is 27.1% for the 256-node synchronous case.

*SC22 | Dallas, TX | hpc accelerates. 8

The total time required by synchronous I/O increases with
increasing number of nodes. This is due to the fact that

communication is time-consuming and the GPFS
file-system write operation does not scale well.

Results: Deforming Bubble Problem

• This is a benchmark problem for multiphase CFD applications in Flash-X. The
deformation is computed by level-set advection and redistancing algorithm.

• For results shown in Fig. 6, the number of bubbles per MPI process is varied.
Fig. 1 shows bubble undergo deformation under a velocity field.

• For the 64-node case the I/O time as a percentage of the total simulation
time goes down from 22.3% to 4.7%.

• For the 256-node case, the I/O time is significantly higher for the
synchronous case; this is due to the fact that a lot of communication is
required to write the file to disk from 256 nodes (or 5,376 MPI ranks) and
the GPFS file system on Summit does not scale well.

• The asynchronous I/O time for 256 nodes remains the same as for other
cases, but the Com_ time has increased because a greater percentage of
Com_ time overlaps with IO_ time.

*SC22 | Dallas, TX | hpc accelerates. 9

Conclusions and Future Work

• This work presents the performance evaluation of various problems from Flash-X that show significant performance
gains by enabling asynchronous I/O.

• Heterogeneous applications utilizing MPI threads and GPUs are carefully chosen and set up to understand the
limitations and advantages of the proposed method.

• The Flash-X code main branch already supports this feature, and it can be invoked by simply adding the
+hdf5AsyncIO setup option in the setup command.

• We study three problems: Sod uses AMReX for mesh refinement and communication, deforming bubble uses
Paramesh and only MPI (no threads), and streaming sine wave uses also GPUs for computations.

• In the future, we want to add compression to the checkpoint files written asynchronously and study the
performance.

10

11

