

Contents

* Flash-X

* HDF5 Async 10

e Async IO Implementation

* Results

e Conclusions and Future Work

F I a S h ‘X Flash-X is an R&D 100 award winner for 2022

VR E L S LT i Simulations using Flash-X

code for heterogeneous compute
architecture Core-collapse Supernova and Gravity Effects on Pool Boiling.

Supports “uniform” and “adaptive”
mesh

Primarily written in Fortran
Component based code

. . . . Satellite
Eulerian base discretization _ Bubbles

AMR is used to:
 Reduce memory footprint
e Reduce computation

Used for various simulations:
 Galaxy clusters to AR Low Gravity
e Turbulent Nuclear Burning

Accelerating Flash-X with Asynchronous 1/0

e Previous Flash-X versions only supports synchronous HDF5 1/0O
e |/O cost can be high with large scale simulation runs
e Asynchronous I/O that can overlap computation with I/O can reduce the runtime

Async /O

Async /O
Savings

HDE5 Asynchronous 10

e New async API introduced by HDF5 1.13
e Asynchronous I/O VOL connector () enables:
e Transparent background thread execution of HDF5 I/O operations
e Overlaps I/O with computation to reduce the total application execution time

Application
thread

Background |

https://github.com/hpc-io/vol-async

Async |0 implementation in Flash-X

e Requires HDF5 1.13+, vol-async, and Argobots to be installed
e Flash-X async I/O can be turned on by add +hdf5async to the setup command

/* create a parallel hdf5 dataset */
#ifdef FLASH_IO_ASYNC_HDF5
dataset = H5Dcreate_async(*file_identifier, record_label_new,
HS5T_NATIVE_DOUBLE, dataspace, H5P_DEFAULT, HS5P_DEFAULT, H5P_DEFAULT, io_es_id);
#else
dataset = H5Dcreate(*file_identifier, record_label_new,
HS5T_NATIVE_DOUBLE, dataspace, HS5P_DEFAULT,H5P_DEFAULT, H5P_DEFAULT);

#endif

Results: Sod

Sod is a compressible flow explosion problem widely used
for verification of shock-capturing simulation codes.

We used a 3D Sod problem with tracer particles.

Each runs for 109 steps, writes a checkpoint file every 33
steps, a plot file every 10 steps, and compared the total
execution time with 5 different configurations that uses
Synchronous and Asynchronous 1/0, with and without
MPI_THREAD_MULTIPLE, and using GPFS and UnifyFS.

For cases with async, the majority of the write operations
are overlapping with Flash-X's computation. Exceptions
include the initial data writes and the last step as there is
no computation to overlap with.

SC22 | Dallas, TX | hpc accelerates. ‘e ® il

il |

Time (Seconds)

Time (x1000 seconds)

Com_Syn_T1
Com_Syn_TM
Com_Asy_TM

m|0O_Syn_T1
®m|0_Syn_TM
m|O_Asy T™M

Com_SynUFS_T1* mIO_SynUFS_T1*
m Com_AsyUFS_TM* mIO_AsyUFS_TM*

o II"I

32x32x32 64x32x32 64x64x32 64x64x64
Problem Size

(a) Sod - weak scaling, 16 to 128 nodes

Com_Syn_T1
Com_Syn_TM m|0_Syn_TM
Com_Asy TM m|O_Asy T™M
Com_SynUFS_T1* mIO_SynUFS _T1*
m Com_AsyUFS_TM* m|O_AsyUFS_TM*

m|O_Syn_T1

16 32 64 128
Number of nodes

(b) Sod - strong scaling, problem size 64x64x64

Results: Streaming Sine Wave

wlO_Asy T™M
Com_Asy ™

w|O_Syn_ TM
Com_Syn TM

* The streaming sine wave test problem is a test problem
for verifying the correctness of the streaming advection
operator in thornado as well as the Flash-X interface to
thornado.

M
O
c
o
o
d)
L)
Q
lg
[

e This problem uses GPU and CPU (threading).

* One GPU per MPI rank, and the data is copied from GPU
to CPU memory automatically by FLASH-X before being
written out

64 128 256 512
Number of nodes

Fig. 7: Streaming sine wave - strong scaling

e At a higher number of nodes the interference between
COM _time and 10_is higher as the I/O time as a whole
increases: it is 27.1% for the 256-node synchronous case.

The total time required by synchronous I/O increases with
increasing number of nodes. This is due to the fact that
communication is time-consuming and the GPFS
file-system write operation does not scale well.

- \)
o ﬁallas, TX | hpc accelerates. S ® % .

Results: Deforming Bubble Problem

Fig. 1: Contours of energy (E) for time ¢3 > t2 > t1, and an example of
block structured AMR grids.

e This is a benchmark problem for multiphase CFD applications in Flash-X. The
deformation is computed by level-set advection and redistancing algorithm.

* For results shown in Fig. 6, the number of bubbles per MPI process is varied.
Fig. 1 shows bubble undergo deformation under a velocity field.

* For the 64-node case the I/O time as a percentage of the total simulation Fig. 2: Schematic of the deforming bubble problem: The bubbles are defined
- by using a signed distance function, ¢, that undergoes deformation under a
tlme gOGS down from 223% tO 47% pZescribid velgocity field. ¢

w|O_Asy TM
* For the 256-node case, the I/O time is significantly higher for the Com_Asy_TM

synchronous case; this is due to the fact that a lot of communication is =10_Syn_TM
required to write the file to disk from 256 nodes (or 5,376 MPI ranks) and am_Syn.TH
the GPFS file system on Summit does not scale well.

Time (Seconds)

* The asynchronous I/O time for 256 nodes remains the same as for other
cases, but the Com_ time has increased because a greater percentage of
Com__ time overlaps with IO_ time.

16 32 64

Nodes

che'emes' ‘e ® \ Fig. 6: Deforming bubble - strong scaling

Conclusions and Future Work

This work presents the performance evaluation of various problems from Flash-X that show significant performance
gains by enabling asynchronous I/0.

 Heterogeneous applications utilizing MPI threads and GPUs are carefully chosen and set up to understand the
limitations and advantages of the proposed method.

* The Flash-X code main branch already supports this feature, and it can be invoked by simply adding the
+hdf5AsynclO setup option in the setup command.

* We study three problems: Sod uses AMReX for mesh refinement and communication, deforming bubble uses
Paramesh and only MPI (no threads), and streaming sine wave uses also GPUs for computations.

* In the future, we want to add compression to the checkpoint files written asynchronously and study the
performance.

S, | :

APPENDIX
A. HDF5 Async VOL connector Setup

export HDF5_PLUGIN_PATH="<path >/vol-async/src”

export HDF5_VOL CONNECTOR="async under_vol=0;under_info={}"
export ABT_THREAD_STACKSIZE=100000

export HDF5_ASYNC_EXE_FCLOSE=1

B. UnifyFS Setup

module use /sw/summit/unifyfs/modulefiles

module load unifyfs/1.0-beta/mpi-mount-gcc9

export UNIFYFS_LOGIO_SPILL_DIR=/mnt/ssd /$USER/ data
export UNIFYFS_LOG_DIR=SJOBSCRATCH/logs

export share_dir=/gpfs/alpine/SPROJ/scratch /SUSER/jobs/
unifyfs start —--share-dir=$share_dir

C. MPI-IO Hints

We set the MPI-IO hints (using the “ROMIO_HINTS” environment variable) to substantially reduce the total time to write
the HDFS5 file. ROMIO_HINTS directs the use of optimized MPI directives for writing the file in much bigger chunks. Using
these, one can reduce the total I/O time by a factor of 100. Below is an example setup for using 128 Summit nodes.

romio_cb_write = enable
romio_ds_write = disable
romio_cb_read = enable
cb_buffer_size = 16777216
cb_nodes = 128
cb_config_list = *:1

D. Flash-X Setup

We used the following Flash-X setup commands for the three sets of experiments in our paper:

Sod
./ setup Sod —auto -3d +hdfS5async +cubel6 Bittree=True +amrex +hdf5AsynclIO

Deforming Bubble

./setup incompFlow/DeformingBubble —auto -3d -nxb=16 -nyb=16 -nzb=16 +amrex --objdir=dfl +parallellO +hdf5asyncio -
makefile=gcc

#Streaming Sine Wave
./ setup StreamingSineWave -—auto -3d +cartesian -nxb=16 -nyb=16 -nzb=16 nE=16 nSpecies=2 nNodes=2 nMoments=4 momentClosure=
MINERBO -parfile=test_paramesh_3d.par +amrex +thornadoACC thornadoOrder=0ORDER_1

