
Guiding End-Users in the I/O Optimization Journey
Jean Luca Bez, Hammad Ather, Suren Byna

Lawrence Berkeley National Laboratory
jlbez@lbl.gov

Complex I/O stack!

● Using the HPC I/O stack efficiently is a tricky problem

● Interplay of factors can affect I/O performance

● Various optimizations techniques available

● Plethora of tunable parameters

● Each layer brings a new set of parameters

SC22 | Dallas, TX | hpc accelerates. 2

Parallel / Serial Applications

High-Level I/O Libraries

POSIX I-O

VFS, FUSE
MPI-IO

I/O Forwarding Layer

Parallel File System

Storage Devices

HDF5, NetCDF, ADIOS

OpenMPI, MPICH
 (ROMIO)

IBM CIOD, Cray DVS, IOFSL, IOF

Lustre, GPFS, PVFS2, OrangeFS

HDD, SSD, RAID

Metrics to the rescue?

● Darshan is a popular tool to collect I/O profiling

● It aggregates information to provide insights

● Extended tracing mode (DXT) for a fine grain view

● Recorder and TAU are other I/O profiling tools

● How to optimize the I/O of my application?

SC22 | Dallas, TX | hpc accelerates. 3

Visualization to the rescue?

● DXT Explorer can aid visualizing I/O behavior

● It requires tracing to be enabled in Darshan

● How to optimize the I/O of my application?

SC22 | Dallas, TX | hpc accelerates. 4

What is the problem?

● There is still a gap between profiling and tuning

● Drishti: from I/O profiles to meaningful information

● Detect root causes of I/O bottlenecks

● Map I/O bottlenecks into actionable items

● Guide end-user to tune I/O performance

● 4 levels of triggers (HIGH, WARN, OK, INFO)

● > 30 triggers are checked for each .darshan log

PROFILING

TUNED APPLICATION

Overall information
about the Darshan log

and execution

Number of critical
issues, warning, and

recommendations

Drishti checks metrics
for over 30 triggers

Highlight the file that
triggered the issue

Multiple output formats:
textual, SVG, HTML

Severity based on
certainty and impact:
high, medium, low, info

Current version only
checks profiling metrics

Provides actionable
feedback for users

Drishti can check for
HDF5 usage to fine tune
the recommendations

Sample code solutions
are provided

Sample configurations
are provided

How to get Drishti?

Install Drishti on your local machine

$ pip install drishti

Run Drishti with the provided .darshan DXT traces

$ drishti --verbose samples/REPLACE_WITH_FILE_NAME.darshan

On NERSC systems you can also use the container version with Shifter

$ shifter --image=docker:hpcio/drishti -- drishti samples/REPLACE_WITH_FILE_NAME.darshan

How to run Drishti?

usage: drishti [-h] [--issues] [--html] [--svg] [--verbose] [--code] darshan

Drishti:
positional arguments:
 darshan Input .darshan file

optional arguments:
 -h, --help show this help message and exit
 --issues Only displays the detected issues and hides the recommendations
 --html Export the report as an HTML page
 --svg Export the report as an SVG image
 --verbose Display extended details for the recommendations
 --code Display insights identification code

OpenPMD Use Case

Drishti's Overview of Cori's Darshan Logs @ NERSC

● 112,612 Darshan logs collected in Cori

● March 1st to March 5th, 2022

● Runtime depends on the size of .darshan file

● min. of 0.02 seconds, a mean of 10.49 seconds

● max. of 134.98 seconds to generate a report

Level Interface Detected Behavior Jobs Total (%) Relative* (%)

HIGH STDIO High STDIO usage (>10% of total transfer size uses STDIO) 43,120 38.29 52.1

OK POSIX High number of sequential read operations (≥ 80%) 38,104 33.84 58.14

OK POSIX High number of sequential write operations (≥ 80%) 64,486 57.26 98.39

INFO POSIX Write operation count intensive (>10% more writes than reads) 26,114 23.19 39.84

INFO POSIX Read operation count intensive (>10% more reads than writes) 23,168 20.57 35.35

INFO POSIX Write size intensive (>10% more bytes written then read) 23,568 20.93 35.96

INFO POSIX Read size intensive (>10% more bytes read then written) 40,950 36.36 62.48

WARN POSIX Redundant reads 14,518 12.89 22.15

WARN POSIX Redundant writes 59 0.05 0.09

HIGH POSIX High number of small (<1MB) read requests (>10% of total read requests) 64,858 57.59 98.96

HIGH POSIX High number of small (<1MB) write requests (>10% of total write requests) 64,552 57.32 98.49

HIGH POSIX High number of misaligned memory requests (>10%) 36,337 32.27 55.44

HIGH POSIX High number of misaligned file requests (>10%) 65,075 57.79 99.29

HIGH POSIX High number of random read requests (>20%) 26,574 23.6 40.54

HIGH POSIX High number of random write requests (>20%) 559 0.5 0.85

HIGH POSIX High number of small (<1MB) reads to shared-files (>10% of total reads) 60,121 53.39 91.73

HIGH POSIX High number of small (<1MB) writes to shared-files (>10% of total writes) 55,414 49.21 84.55

HIGH POSIX High metadata time (at least one rank spends >30 seconds) 9,410 8.36 14.35

HIGH POSIX Data transfer imbalance between ranks causing stragglers (>15% difference) 40,601 36.05 61.95

HIGH POSIX Time imbalance between ranks causing stragglers (>15% difference) 40,533 35.99 61.84

Level Interface Detected Behavior Jobs Total (%) Relative* (%)

WARN MPI-IO No MPI-IO calls detected from Darshan logs 109,569 97.3 -

HIGH MPI-IO Detected MPI-IO but no collective read operation 169 0.15 5.55

HIGH MPI-IO Detected MPI-IO but no collective write operation 428 0.38 14.06

WARN MPI-IO Detected MPI-IO but no non-blocking read operations 3,043 2.7 100.00

WARN MPI-IO Detected MPI-IO but no non-blocking write operations 3,043 2.7 100.00

OK MPI-IO Detected MPI-IO and collective read operations 402 0.36 13.21

OK MPI-IO Detected MPI-IO and collective write operations 2,592 2.3 85.17

HIGH MPI-IO Detected MPI-IO and inter-node aggregators 2,496 2.22 82.02

WARN MPI-IO Detected MPI-IO and intra-node aggregators 304 0.27 9.99

OK MPI-IO Detected MPI-IO and one aggregator per node 29 0.03 0.95

Conclusion

• Drishti: a solution to guide end-users in optimizing their applications

• Towards closing the gap between I/O metrics and tuning solutions

• Detect typical performance I/O pitfalls

• Provide a set of recommendations

• Evaluated Drishti with user-cases and large volume of Darshan logs

• Future work:

• Include additional sources of logs (e.g., DXT, Recorder)

• Integrate with DXT-Explorer

Guiding End-Users in the I/O Optimization Journey
Jean Luca Bez, Hammad Ather, Suren Byna
jlbez@lbl.gov

github.com/hpc-io/drishti

docker pull hpcio/drishti

