

Complex 1/0 stack!

e Using the HPC I/O stack efficiently is a tricky problem
e Interplay of factors can affect I/O performance

e Various optimizations techniques available

e Plethora of tunable parameters

e Each layer brings a new set of parameters

HDFS5, NetCDF, ADIOS

OpenMPI, MPICH
(ROMIO)

IBM CIOD, Cray DVS, IOFSL, IOF

Lustre, GPFS, PVFS2, OrangeFS

HDD, SSD, RAID

Parallel / Serial Applications

High-Level I/O Libraries

POSIX I-O

MPI-10
VFS, FUSE

I/0 Forwarding Layer

Parallel File System

Storage Devices

Metrics to the rescue?

e Darshan is a popular tool to collect I/0 profiling

® |t aggregates information to provide insights

e Extended tracing mode (DXT) for a fine grain view
e Recorder and TAU are other I/0O profiling tools

e How to optimize the I/O of my application?

a\?>

S

Visualization to the rescue?

e DXT Explorer can aid visualizing 1/0 behavior

® |t requires tracing to be enabled in Darshan

— DXT Explorer Operation @ «=m DXT Explorer Transfer Size a -
i a0y F \:ﬁ; size
7 750000

e How to optimize the I/O of my application?

e

SC22 | Dallas, TX | hpc accelerates. . o

What is the problem?

® There is still a gap between profiling and tuning

e Drishti: from 1/0O profiles to meaningful information
e Detect root causes of |/O bottlenecks
e Map I/0 bottlenecks into actionable items
e Guide end-user to tune I/O performance

® 4 levels of triggers (HIGH, WARN, OK, INFO)

e > 30 triggers are checked for each .darshan log

!

Ik

TUNED APPLICATION

. B [X X] Drishti
Overall information

about the Darshan log 7 LT ool
and execution J0B: 1190243)

EXECUTABLE: bin/8 benchmark parallel Current version only
DARSHAN : jlbez 8 benchmark parallel id1196243 7-23-45631-11755726114084236527 1.darshan o ;
EXECUTION DATE: 2021-07-23 16:40:31+00:00 to 2021-07-23 16:40:32+00:00 (0.00 hours) checks profiling metrics
FILES: 6 files (1 use STDIO, 2 use POSIX, 1 use MPI-IO)
PROCESSES 64
HINTS: romio no_indep rw=true cb nodes=4

Number of critical
issues, warning, and
recommendations — METADATA

— , 5 warnings, and 5 rec dations

» Application is read operation intensive (6.34% writes vs. 93.66% reads) Severlty based on

» Application might have redundant read traffic (more data was read than the highest read offset) Certainty and impact:

» Application might have redundant write traffic (more data was written than the highest write offset) g) R
high, medium, low, info

Drishti checks metrics

" — OPERATIONS
for over 30 triggers

Application mostly uses consecutive (2.73%) and sequential (90.62%) read requests
Application mostly uses consecutive (19.23%) and sequential (76.92%) write requests Mu|t|p|e OUtpUt formats:
Application uses MPI-IO and read data using 640 (83.55%) collective operations
Application uses MPI-IO and write data using 768 (100.00%) collective operations textual, SVG, HTML
Application could benefit from non-blocking (asynchronous) reads

Application could benefit from non-blocking (asynchronous) writes

Application is using inter-node aggregators (which require network communication)

Highlight the file that
triggered the issue

YYYYYYY

2022 | LBL | Drishti report generated at 2022-08-05 13:19:59.787458 in 0.955 seconds

(X X J Drishti

— DRISHTI v.0.3

JOB: 1190243
EXECUTABLE: bin/8 benchmark parallel
DARSHAN : jlbez 8 benchmark parallel id1190243 7-23-45631-11755726114084236527 1.darshan
EXECUTION DATE: 2021-07-23 16:40:31+00:00 to 2021-07-23 16:40:32+00:00 (0.00 hours)
RIIESE 6 files (1 use STDIO, 2 use POSIX, 1 use MPI-IO)
PROCESSES 64
HINTS: romio no_indep rw=true cb_nodes=4
— , 5 warnings, and 5 rec dations
— METADATA

» Application is read operation intensive (6.34% writes vs. 93.66% reads)
» Application might have redundant read traffic (more data was read than the highest read offset)
» Application might have redundant write traffic (more data was written than the highest write offset)

— OPERATIONS

© Recommendations:

< Consider buffering read operations into larger more contiguous ones

g A < Since the appplication already uses MPI-IO, consider using collective I/0 calls (e.g. MPI _File read all() or

Provides actionable MPI_File read at_all()) to aggregate requests into larger ones
Application mostly uses consecutive (2.73%) and sequential (90.62%) read requests
Application mostly uses consecutive (19.23%) and sequential (76.92%) write requests
Application uses MPI-IO and read data using 640 (83.55%) collective operations
Application uses MPI-IO and write data using 768 (100.00%) collective operations
Application could benefit from non-blocking (asynchronous) reads
o Recommendations:

© Since you use MPI-IO, consider non-blocking/asynchronous I/0 operations (e.g., MPI_File iread(),
MPI_File read all begin/end(), or MPI File read at all begin/end())
» Application could benefit from non-blocking (asynchronous) writes

feedback for users

YYYYVYY

o Recommendations: Drishti can check for
» Since you use MPI-IO, consider non-blocking/asynchronous I/0 operations (e.g., MPI_File iwrite(), .
MPL File write all begin/end(), or MPI File write at all begin/end()) HDF5 usage to fine tune
» Application is using inter-node aggregators (which require network communication) the recornrne[]dations

© Recommendations:
o Set the MPI hints for the number of aggregators as one per compute node (e.g., cb_nodes=32)

2022 | LBL | Drishti report generated at 2022-08-05 13:20:19.715639 in 0.996 seconds

Sample code solutions
are provided

L

— OPERATIONS

o Recommendations:
o Consider buffering read operations into larger more contiguous ones
o Since the appplication already uses MPI-IO, consider using collective I/0 calls (e.g. MPI File read all() or
MPI File read at all()) to aggregate requests into larger ones

{— Solution Example Snippet

| 1 MPI File open(MPI COMM WORLD, "output-example.txt", MPI MODE CREATE|MPI MODE RDONLY, MPI INFO NULL,
| 2 ...
| 3 MPI_File_read_all(fh, &buffer, size, MPI_INT, &s);

Application mostly uses consecutive (2.73%) and sequential (90.62%) read requests
Application mostly uses consecutive (19.23%) and sequential (76.92%) write requests
Application uses MPI-IO and read data using 640 (83.55%) collective operations
Application uses MPI-IO and write data using 768 (100.00%) collective operations
Application could benefit from non-blocking (asynchronous) reads
o Recommendations:
o Since you use MPI-IO, consider non-blocking/asynchronous I/0 operations (e.g., MPI File iread(),
MPI_File read _all begin/end(), or MPI_File read at all begin/end())

YYVYYVYY

— Solution Example Snippet
MPI_File fh;
MPI_Status s;

MPI Request r;
MPI_File open(MPI_COMM WORLD, "output-example.txt", MPI_MODE_CREATE|MPI_MODE_RDONLY, MPI_INFO_NULL
MPI_File iread(fh, &buffer, BUFFER_SIZE, n, MPI_CHAR, &r);

// compute something

=
QOO NOURWNKR

11 MPI_Test(&r, &completed, &s);
12 co0

13 if (!completed) {

14 // compute something

15

16 MPI Wait(&r, &s);

17 }

» Application could benefit from non-blocking (asynchronous) writes
o Recommendations:
o Since you use MPI-IO, consider non-blocking/asynchronous I/0 operations (e.g., MPI_File iwrite(),
MPI_File write all _begin/end(), or MPI_File write at all begin/end())

P R T T e ® o e

10 oL
11 MPI_Test(&r, &completed, &s);

[12... |
' 13 if (!completed) { '
14 // compute something
15
16 MPI Wait(&r, &s);
| 173 |
| |
I J

» Application is using inter-node aggregators (which require network communication)
© Recommendations:
o Set the MPI hints for the number of aggregators as one per compute node (e.g., cb_nodes=32)

— Solution Example Snippet

il 3 ==ccccccssccccccsscccccoszzaaas #

2 # MPICH #

K R #

4 export MPICH MPIIO_HINTS="*:cb_nodes=16:cb_buffer size=16777216:romio_cb_write=enable:romio_ds wri
)

6 # * means it will apply the hints to any file opened with MPI-IO

7 # cb_nodes ---> number of aggregator nodes, defaults to stripe count

8 # cb buffer size ---> controls the buffer size used for collective buffering
9 # romio cb write ---> controls collective buffering for writes

10 # romio_cb read ---> controls collective buffering for reads

11 # romio ds write ---> controls data sieving for writes

12 # romio ds read ---> controls data sieving for reads

13

14 # to visualize the used hints for a given job
15 export MPICH MPIIO HINTS DISPLAY=1

16
177 7] coom00e00 006 EeHac Gt EEE R R RO #
Samp|e conﬁgurations 18 # OpenMPI / SpectrumMPI (Summit) #
. 0 I O A R #
are provided 20 export OMPI MCA io=romio321
21 export ROMIO HINTS=./my-romio-hints
22

23 # the my-romio-hints file content is as follows:
24 cat $ROMIO_HINTS

26 romio_cb write enable
27 romio_cb_read enable
28 romio_ds write disable
29 romio ds read disable
30 cb_buffer_size 16777216
31 cb_nodes 8

_ 2022 | LBL | Drishti report generated at 2022-08-05 13:20:09.160753 in 0.965 seconds

How to get Drishti?

Install Drishti on your local machine

S pip install drishti

Run Drishti with the provided .darshan DXT traces

$ drishti --verbose samples/REPLACE_WITH_FILE_NAME.darshan

On NERSC systems you can also use the container version with Shifter

$ shifter --image=docker:hpcio/drishti -- drishti samples/REPLACE_WITH_FILE_NAME.darshan

How to run Drishti?

usage: drishti [-h] [--issues] [--html] [--svg] [--verbose] [--code] darshan

Drishti:
positional arguments:
darshan Input .darshan file

optional arguments:
-h, --help show this help message and exit

--issues Only displays the detected issues and hides the recommendations
--html Export the report as an HTML page

--svg Export the report as an SVG image

--verbose Display extended details for the recommendations

- -code Display insights identification code

OpenPMD Use Case

10
Request size (MB)

2 =
20
Time (seconds)

10

Request size (MB)

40
Time (seconds)

— METADATA

» Application
» Application
» Application

is write operation intensive (90.85% writes vs. 9.15% reads)
is write size intensive (91.14% write vs. 8.86% read)
might have redundant read traffic (more data read than the highest offset

— METADATA
» Application is write operation intensive (60.83% writes vs. 39.17% reads)
» Application is write size intensive (64.15% write vs. 35.85% read)

— OPERATIONS
» Application mostly uses consecutive (97.67%) and sequential (2.16%) read requests
» Application mostly uses consecutive (97.85%) and sequential (1.17%) write requests
» Application uses MPI-I0 and write data using 7680 (92.50%) collective operations
» Application could benefit from non-blocking (asynchronous) reads
» Application could benefit from non blocking (asynchronous) writes

— OPERATIONS

» Application
» Application
» Application
» Application

mostly uses consecutive (88.56%) and sequential (7.02%) write requests
uses MPI-IO and write data using 8448 (100.00%) collective operations
could benefit from non-blocking (asynchronous) reads

could benefit from non-blocking (asynchronous) writes

Drishti's Overview of Cori's Darshan Logs @ NERSC

e 112,612 Darshan logs collected in Cori
e March 1st to March 5th, 2022
® Runtime depends on the size of .darshan file

e min. of 0.02 seconds, a mean of 10.49 seconds

e max. of 134.98 seconds to generate a report

Level Interface Detected Behavior Jobs Total (%) Relative* (%)
HIGH STDIO High STDIO usage (>10% of total transfer size uses STDIO) 43,120 38.29 52.1
HINDS High number of sequential read operations (> 80%) 38,104 33.84 58.14

0K POSIX High number of sequential write operations (= 80%) 64,486 57.26 98.39
POSIX Write operation count intensive (>10% more writes than reads) 26,114 23.19 39.84

POSIX Read operation count intensive (>10% more reads than writes) 23,168 20.57 #5648

POSIX Write size intensive (>10% more bytes written then read) 23,568 20.93 35.96

POSIX Read size intensive (>10% more bytes read then written) 40,950 36.36 62.48

POSIX Redundant reads 14,518 12.89 22.15

POSIX Redundant writes 59 0.05 0.09

HIGH POSIX High number of small (<IMB) read requests (>10% of total read requests) 64,858 57.59 98.96
HIGH POSIX High number of small (<IMB) write requests (>10% of total write requests) 64,552 57.32 98.49
POSIX High number of misaligned memory requests (>10%) 36,337 32.27 55.44

HIGH POSIX High number of misaligned file requests (>10%) 65,075 LYNL) 99.29
HIGH POSIX High number of random read requests (>20%) 26,574 23.6 40.54
POSIX High number of random write requests (>20%) 559 0.5 0.85

HIGH POSIX High number of small (<IMB) reads to shared-files (>10% of total reads) 60,121 53.39 91.73
HIGH POSIX High number of small (<IMB) writes to shared-files (>10% of total writes) 55,414 49.21 84.55
POSIX High metadata time (at least one rank spends >30 seconds) 9,410 8.36 14.35

POSIX Data transfer imbalance between ranks causing stragglers (>15% difference) 40,601 36.05 61.95

POSIX Time imbalance between ranks causing stragglers (>15% difference) 40,533 H9.9Y 61.84

4
—

ittt

Level Interface Detected Behavior Jobs Total (%) Relative* (%)

HIGH MPI-I0 Detected MPI-I0 but no collective read operation 169 0.15 o165
HIGH MPI-10 Detected MPI-I10 but no collective write operation 428 0.38 14.06
WARN MPI-10 Detected MPI-I0 but no non-blocking read operations 3,043 2.7 100.00
WARN MPI-10 Detected MPI-I0 but no non-blocking write operations 3,043 2.7 100.00

0K MPI-I0 Detected MPI-I0 and collective read operations 402 0.36 13.21

0K MPI-I0 Detected MPI-I0 and collective write operations 2,592 23 85.17

HGH MPHO DetectedMPHIOandinter-nodesgoregators 248 222 6202 a—

WARN MPI-10 Detected MPI-I0 and intra-node aggregators 304 0.27 9.99

0K MPI-I0 Detected MPI-I0 and one aggregator per node A 0.03 0.95

Conclusion

e Drishti: a solution to guide end-users in optimizing their applications
* Towards closing the gap between I/O metrics and tuning solutions
» Detect typical performance I/0O pitfalls
* Provide a set of recommendations
e Evaluated Drishti with user-cases and large volume of Darshan logs
e Future work:
* Include additional sources of logs (e.g., DXT, Recorder)

e Integrate with DXT-Explorer

Drishfi

Guiding End-Users in the I/O Optimization Journey

Jean Luca Bez, Hammad Ather, Suren Byna
jlbez@Ibl.gov

EEEEEEEEEEEEEEEEEEEEEEEE

BERKELEY LAB

Bringing Science Solutions to the World

