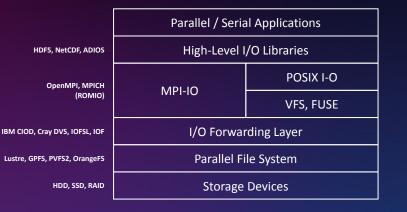


Drishfi Guiding End-Users in the I/O Optimization Journey

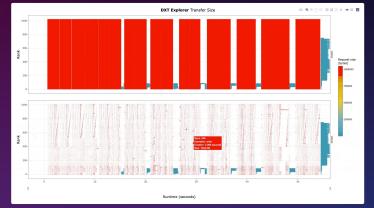

Jean Luca Bez, Hammad Ather, Suren Byna

Lawrence Berkeley National Laboratory jlbez@lbl.gov

Complex I/O stack!

- Using the HPC I/O stack efficiently is a tricky problem
- Interplay of factors can affect I/O performance
- Various optimizations techniques available
- Plethora of tunable parameters
 - Each layer brings a new set of parameters

Metrics to the rescue?


- **Darshan** is a popular tool to collect I/O **profiling**
 - It aggregates information to provide insights
 - Extended tracing mode (DXT) for a fine grain view
- **Recorder** and **TAU** are other I/O profiling tools
- How to optimize the I/O of my application?

Visualization to the rescue?

- DXT Explorer can aid visualizing I/O behavior
 - It requires tracing to be enabled in Darshan

• How to optimize the I/O of my application?

What is the problem?

- There is still a gap between profiling and tuning
- **Drishti**: from I/O profiles to meaningful information
 - **Detect** root causes of I/O bottlenecks
 - Map I/O bottlenecks into actionable items
 - **Guide** end-user to tune I/O performance
- 4 levels of triggers (HIGH, WARN, OK, INFO)
- > 30 triggers are checked for each .darshan log

TUNED APPLICATION

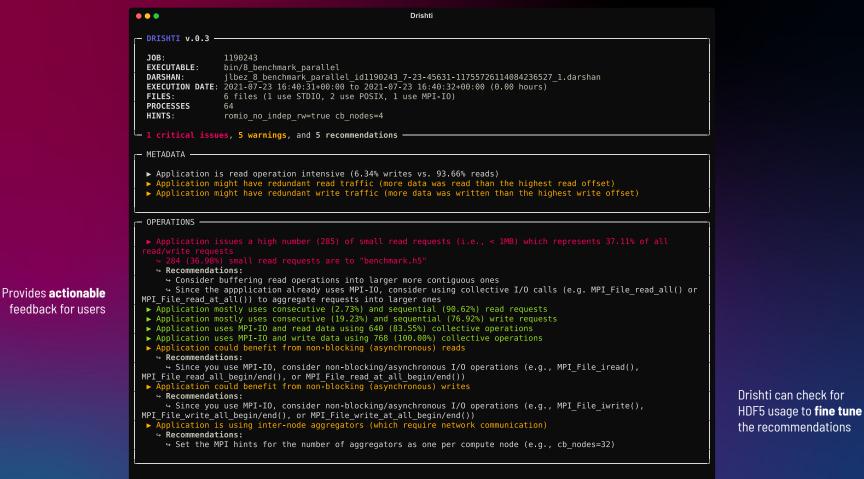
Overall information	
about the Darshan log	_ DRISHT
and execution	JOB: EXECUT DARSHA EXECUT FILES:
	PPACES

Number of critical issues, warning, and recommendations

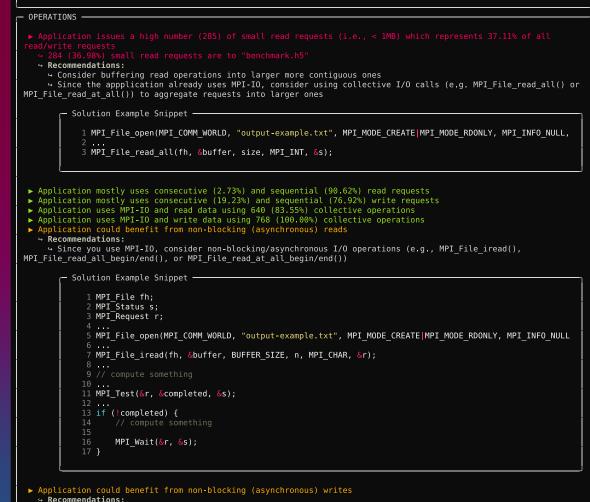
Drishti checks metrics for **over 30 triggers**

Highlight the **file** that triggered the issue

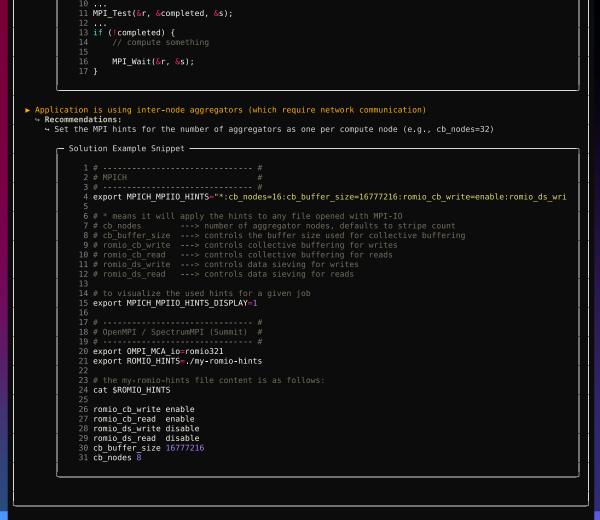
•••	Drishti						
- DRISHTI v.0.3 -							
JOB:							
EXECUTABLE: DARSHAN: EXECUTION DATE: FILES:	bin/8_benchmark_parallel jlbez_8_benchmark_parallel_id1190243_7-23-45631-11755726114084236527_1.darshan 2021-07-23 16:40:31+00:00 to 2021-07-23 16:40:32+00:00 (0.00 hours) 6 files (1 use STDIO, 2 use POSIX, 1 use MPI-IO)						
PROCESSES HINTS:	64 romio_no_indep_rw=true cb_nodes=4						
🗕 1 critical issu	es, 5 warnings, and 5 recommendations						
- METADATA							
Application m	 ▶ Application is read operation intensive (6.34% writes vs. 93.66% reads) ▶ Application might have redundant read traffic (more data was read than the highest read offset) 						
Application m	ight have redundant write traffic (more data was written than the highest write offset)						
- OPERATIONS							
read/write reque							
) small read requests are to "benchmark.h5"						
	ostly uses consecutive (2.73%) and sequential (90.62%) read requests ostly uses consecutive (19.23%) and sequential (76.92%) write requests						
 Application u 	ses MPI-IO and read data using 640 (83.55%) collective operations						
	ses MPI-IO and write data using 768 (100.00%) collective operations ould benefit from non-blocking (asynchronous) reads						
	ould benefit from non-blocking (asynchronous) vrites						
	s using inter-node aggregators (which require network communication)						


2022 | LBL | Drishti report generated at 2022-08-05 13:19:59.787458 in 0.955 seconds

Current version only checks **profiling** metrics


Severity based on certainty and impact: high, medium, low, info

Multiple output formats: textual, SVG, HTML_____



2022 | LBL | Drishti report generated at 2022-08-05 13:20:19.715639 in 0.996 seconds

Sample code solutions are provided

↔ Since you use MPI-IO, consider non-blocking/asynchronous I/O operations (e.g., MPI File iwrite(), MPI File write all begin/end(), or MPI File write at all begin/end())

Sample configurations are provided

How to get Drishti?

$\bullet \bullet \bullet$

Install Drishti on your local machine

\$ pip install drishti

Run Drishti with the provided .darshan DXT traces

\$ drishti --verbose samples/REPLACE_WITH_FILE_NAME.darshan

On NERSC systems you can also use the container version with Shifter

\$ shifter --image=docker:hpcio/drishti -- drishti samples/REPLACE_WITH_FILE_NAME.darshan

How to run Drishti?

$\bullet \bullet \bullet$

```
usage: drishti [-h] [--issues] [--html] [--svg] [--verbose] [--code] darshan
```

Drishti: positional arguments: darshan Input .darshan file

optional arguments:

-h.	help	show	this	help	message	and	exit

- --issues Only displays the detected issues and hides the recommendations
- --html Export the report as an HTML page
- --svg Export the report as an SVG image
- --verbose Display extended details for the recommendations
- --code Display insights identification code

OpenPMD Use Case

Drishti's Overview of Cori's Darshan Logs @ NERSC

- **112,612** Darshan logs collected in **Cori**
- March 1st to March 5th, 2022
- **Runtime** depends on the size of .darshan file
 - min. of **0.02** seconds, a mean of **10.49** seconds
 - max. of **134.98** seconds to generate a report

Level	Interface	Detected Behavior	Jobs	Total (%)	Relative* (%)
HIGH	STDIO	High STDIO usage (>10% of total transfer size uses STDIO)	43,120	38.29	52.1
OK	POSIX	High number of sequential read operations (≥ 80%)	38,104	33.84	58.14
OK	POSIX	High number of sequential write operations (≥ 80%)	64,486	57.26	98.39
INFO	POSIX	Write operation count intensive (>10% more writes than reads)	26,114	23.19	39.84
INFO	POSIX	Read operation count intensive (>10% more reads than writes)	23,168	20.57	35.35
INFO	POSIX	Write size intensive (>10% more bytes written then read)	23,568	20.93	35.96
INFO	POSIX	Read size intensive (>10% more bytes read then written)	40,950	36.36	62.48
WARN	POSIX	Redundant reads	14,518	12.89	22.15
WARN	POSIX	Redundant writes	59	0.05	0.09
HIGH	POSIX	High number of small (<1MB) read requests (>10% of total read requests)	64,858	57.59	98.96
HIGH	POSIX	High number of small (<1MB) write requests (>10% of total write requests)	64,552	57.32	98.49
HIGH	POSIX	High number of misaligned memory requests (>10%)	36,337	32.27	55.44
HIGH	POSIX	High number of misaligned file requests (>10%)	65,075	57.79	99.29
HIGH	POSIX	High number of random read requests (>20%)	26,574	23.6	40.54
HIGH	POSIX	High number of random write requests (>20%)	559	0.5	0.85
HIGH	POSIX	High number of small (<1MB) reads to shared-files (>10% of total reads)	60,121	53.39	91.73
HIGH	POSIX	High number of small (<1MB) writes to shared-files (>10% of total writes)	55,414	49.21	84.55
HIGH	POSIX	High metadata time (at least one rank spends >30 seconds)	9,410	8.36	14.35
	POSIX	Data transfer imbalance between ranks causing stragglers (>15% difference)	40,601	36.05	61.95
	POSIX	Time imbalance between ranks causing stragglers (>15% difference)	40,533	35.99	61.84

Level	Interface	Detected Behavior	Jobs	Total (%)	Relative* (%)
WARN	MPI-IO	No MPI-IO calls detected from Darshan logs	109,569	97.3	-
HIGH	MPI-IO	Detected MPI-I0 but no collective read operation	169	0.15	5.55
HIGH	MPI-IO	Detected MPI-IO but no collective write operation	428	0.38	14.06
WARN	MPI-IO	Detected MPI-IO but no non-blocking read operations	3,043	2.7	100.00
WARN	MPI-IO	Detected MPI-I0 but no non-blocking write operations	3,043	2.7	100.00
OK	MPI-IO	Detected MPI-IO and collective read operations	402	0.36	13.21
OK	MPI-IO	Detected MPI-IO and collective write operations	2,592	2.3	85.17
HIGH	MPI-IO	Detected MPI-IO and inter-node aggregators	2,496	2.22	82.02
WARN	MPI-IO	Detected MPI-IO and intra-node aggregators	304	0.27	9.99
OK	MPI-IO	Detected MPI-IO and one aggregator per node	29	0.03	0.95

Conclusion

- **Drishti**: a solution to guide end-users in optimizing their applications
 - Towards closing the gap between I/O metrics and tuning solutions
 - Detect typical performance I/O pitfalls
 - **Provide** a set of recommendations
- Evaluated Drishti with user-cases and large volume of Darshan logs
- Future work:
 - Include additional sources of logs (e.g., DXT, Recorder)
 - Integrate with DXT-Explorer

Drishfi Guiding End-Users in the I/O Optimization Journey

Jean Luca Bez, Hammad Ather, Suren Byna jlbez@lbl.gov

docker pull hpcio/drishti

github.com/hpc-io/drishti

