
BTS: Exploring Effects of Background Task-Aware
Scheduling for Key-Value CSDs

Yeohyeon Park1, Chang-Gyu Lee1, Seungjin Lee1, Inhyuk Park2, Soonyeal Yang2

Woosuk Chung2, Youngjae Kim1

1Dept. of Computer Science and Engineering, Sogang University, Seoul, Republic of Korea
2Memory System R&D, SK Hynix

{yeohyeon, changgyu, seungjinn, youkim}@sogang.ac.kr, {inhyuk.park, soonyeal.yang, woosuk.chung}@sk.com

Abstract—A computational storage device (CSD) using Intel
SPDK guarantees low latency and high throughput. The CSD
must aid background tasks for the storage service applications
(background tasks) without harming user I/O performance (fore-
ground I/O) since the CSD is also a storage device. However,
in practice, SPDK often increases foreground I/O latencies and
underutilizes CPU cores in the CSD. These problems proceed
from allocating foreground I/Os and background tasks to the
same CPU core because SPDK processes them as the same
request without distinguishing them. To tackle this, we propose a
Background Task-aware Scheduler (BTS) for CSDs built using
SPDK. BTS solves the following problems: (i) idle CPU cores
in the CSD are not used, and (ii) the latency of foreground
I/O increases due to interference with background tasks. For
evaluation, we implemented a key-value interface CSD using
SPDK. With BTS, the results show that idle CPUs are properly
used to process background tasks by guaranteeing the low
latency of foreground I/O when the background tasks are set
to deduplication.

Index Terms—High Performance I/O, Intel SPDK, Computa-
tional Storage Device (CSD)

I. INTRODUCTION

High-Performance Computing (HPC) is starting to carefully

look at the potential of Computational Storage Device (CSD)

for fast data retrieval and analysis with data generated from

simulations. CSDs reduces the transfer of data between host

and device by moving computation tasks formerly performed

by the host into the storage device, thereby improving overall

system performance [1]–[17]. Recently, Los Alamos National

Lab. (LANL) and SK Hynix demonstrated the world’s first

key value CSD (KV-CSD) to accelerate the analysis of HPC

scientific applications [3]. Typically, scientific applications

in HPC entail analysis of the output data produced after a

simulation. In LANL’s use case, a portion of the analysis tasks,

particularly point and range queries for data retrieval, were

carried out by storage devices due to the indexing and the

searching capabilities of KV-CSD.

The typical hardware architecture of a CSD embeds an

accelerator or processor such as an embedded CPUs in the

storage device to perform computations. There are two major

approaches to the internal software of a CSD up to date

as follows. First, devices such as Samsung’s SmartSSD [4],

Insider [18], and PolarDB [19] execute computation tasks

directly in firmware or FPGA without operating system (OS)

support, like bare-metal applications in embedded systems.

On the other hand, devices such as Willow [20] and New-

port SSD [21] of NGD system, and DragonFire Card [22]

have an embedded OS inside. These devices run offloaded

computation tasks as a user-mode process on top of the OS.

Compared to the bare-metal application approach, the CSD

with an embedded OS has advantages in programmability and

manageability. For example, offloaded tasks can benefit from

OS features such as existing libraries, easier multitasking,

and well-defined hardware abstraction via API and OS device

drivers. However, incorporating OS in a CSD comes with costs

such as user-kernel mode switching, interrupt handling, and

context switching overheads.

The aforementioned OS overheads are not only the CSD’s

problem. Intel SPDK is one of the state-of-the-art projects that

solve OS problems. SPDK implements a user-mode NVMe

driver that employs a polled-mode that uses polling instead of

expensive interrupts to communicate with low-latency SSDs.

The SPDK also emphasizes a lock-less and asynchronous

design with per-core event loops to minimize communication

overhead between two CPU cores, such as locking or cache

coherence protocols. These design choices made by Intel –

user-mode, polled mode, lock-less NVMe driver, and per-

core event loops – also cover similar problems from a high-

performance perspective, not computational storage [23]. A

CSD may not have the powerful hardware where the SPDK is

typically employed, such as ultra-low latency SSDs and tens of

enterprise-class CPU cores, but CSDs with an OS can benefit

from the SPDK’s design effort to minimize the OS overhead.

By directly adopting core design principles or SPDK, a CSD

with an OS can mitigate the OS overhead.

However, there is still a critical problem in SPDK’s design

when it comes to executing offloaded computation tasks.

SPDK limits the I/O request to be processed by a dedicated

CPU core to avoid any overheads induced by communication

between CPU cores. More specifically, in SPDK, when a CPU

core receives an I/O request and starts to process it, that CPU is

responsible for handling it all the way to sending completion to

the client. This core binding is critical to the CSD, particularly

when the task offloaded has long latency because the task will

block all I/O requests and any subroutines derived from I/O

pending on that specific CPU. Furthermore, this core binding

not only increases overall I/O latency but cannot use other

CPU cores even if they are idle.

26

2022 IEEE/ACM International Parallel Data Systems Workshop (PDSW)

978-1-6654-7562-4/22/$31.00 ©2022 IEEE
DOI 10.1109/PDSW56643.2022.00010

Per-core Event Loop

…

Callback
Functions

HW Queue
Abstraction

Event Queue

Thread 1
Submit

Fetch

Polling

V

B

B
BV

B

Submit Event to Event QueueS
Fetched by ReactorF
Callback Function for CompletionC

S

F

S

F

C

C

Write2

3

4

5

6

1

7

1

I/O Device

Poller 1

Fig. 1. Depiction of the software stack of a block-based CSD using SPDK
and the I/O flow from the host to the CSD.

In this paper, we build a CSD with a key-value interface as

the KV-CSD [3] model but use SPDK on top of the CSD with

an OS. The computational storage capability is implemented

inside SPDK as a background storage service. The background

storage service generates background tasks that are not limited

to only computation without any extra I/O, but it also includes

possible I/O originating from I/O data from the client. To

tackle the OS overhead problem occurring in our CSD model,

we propose a background task-aware scheduler (BTS). The

BTS specifically solves the following problems: (i) SPDK

does not distinguish between foreground I/O and background

tasks. Therefore it binds the same core for both requests

and causes resource contention in that CPU core (execution

thread1). (ii) SPDK can not use idle resources/CPU core due

to the inability to flexibly relocate any requests to idle cores.

To emulate KV-CSD with a BTS, we configured two

machines connected to 10 Gbps Ethernet and took one server

for the NVMe-oF target using SPDK. The NVMe-oF target

is seen as KV-CSD with BTS to another server. Experiments

have shown that the BTS minimizes the latency overhead on

foreground I/O due to the background tasks and actively uses

idle cores.

II. BACKGROUND AND MOTIVATION

A. Computational Storage Device Using Intel SPDK

The SPDK block device layer is BDEV, the C library

equivalent to the OS block storage layer. BDEV provides a

pluggable module API for implementing block devices that in-

terface with block storage devices. Users can use the available

BDEV modules or create VBDEV (virtual BDEV) modules

that build block devices on an existing BDEV. Thus, storage

developers can easily implement storage service applications

such as compression and deduplication using their VBDEV in

the SPDK.

Figure 1 depicts the software stack of an SPDK-based CSD.

We call the device a CSD because it runs a software stack

related to the NVMe driver and SPDK on the device side. As

shown in Figure 1, SPDK provides essential functions such

as NVMe-oF target and NVMe driver to operate as a device

driver as a BDEV module. Users can insert custom storage

functions using the VBDEV module. Therefore, they can build

1Hereafter, we denote an OS thread bound to a CPU core for processing
foreground I/O requests and background tasks as an execution thread.

Fig. 2. Illustration of each foreground I/O slowing down due to interference
from background tasks.

high-performance storage applications by configuring the I/O

path with VBDEV and BDEV with the necessary functions.

SPDK abstracts the CPU core into threads, event queues,

and pollers. When I/O is delivered to the CPU core, the

execution thread handles the I/O. I/O and the BDEV infor-

mation to be processed are delivered to the event queue by an

SPDK event, and a thread processes I/O by fetching an event

from the event queue and executing the BDEV function. The

poller periodically checks whether I/O to the storage device is

completed, and when I/O is completed, it notifies BDEV and

the host of I/O completion through a callback.

Figure 1 shows an example of how a write I/O request is

processed along the I/O path defined by the user. 1 The SPDK

occupies the storage device, and the user/host application will

access the storage device through the SPDK. 2 Host and CSD

are connected through the NVMe-oF protocol to communicate,

and the host application sends a write request to the NVMe-

oF driver through the file system. 3 The NVMe-oF driver

converts the received write into an NVMe command and sends

it to the CSD using the NVMe-oF protocol. 4 The NVMe-

oF target receives the NVMe command via the NVMe-oF

protocol, selects one of the cores activated in the SPDK,

and delivers it. The execution thread of the core starts I/O

processing in units of BDEV and VBDEV. They are inserted

into the event queue and then executed in order. To this end,

the execution thread executes the NVMe-oF target BDEV

and converts the NVMe command into a BDEV request, and

the BDEV request is submitted to the event queue along

with the VBDEV information to be executed next. 5 The

execution thread executes the VBDEV (if any) defined by the

user included in the I/O path along the specified order. Then,

when the processing of the last VBDEV is completed, it is

responsible to submits an I/O request to retrieve actual data

from the device for NVMe BDEV to the event queue. 6 The

NVMe driver BDEV transfers I/O to the NVMe SSD, and

then the NVMe SSD serves that I/O. 7 Since SPDK uses

polling, not the interrupt mechanism for communicating with

the device, the poller keeps polling the NVMe completion

queue for I/O completion. Then, a callback function registered

for that I/O is invoked to inform the completion of I/O to

(V)BDEVs.

B. Motivation

We found that SPDK places foreground I/O and background

tasks derived from the foreground I/O on the same core. So

they compete for use of the cores, and there is interference

between them, resulting in the following problems:

27

5

2

1 Key-Value Request

NVMe Command

3

4

6

4

NVMe Command

5

2 File I/O

3 Block I/O

1 Key-Value Request

(a) Key-Value Store atop block-based CSD (b) Key-value CSD

Fig. 3. Depiction of the software stack of key-value CSD.

First, the response time of the user’s I/O request (foreground

I/O operation) is increased. Figure 2(a) describes this situation

well. The background task derived from the foreground I/O is

bound to the core on which the foreground I/O runs. Therefore,

in the end, the foreground I/O and background task compete

for the same CPU core. Figure 2(a) depicts a problem that

occurs in a situation where our proposed BTS scheduler is

not applied. Assume that the execution time of each task is

1 unit in Figure 2(a). Then, the average response time of the

foreground I/O tasks in Figure 2(a) increases by about 31%

due to resource contention with the background task.

Second, the background tasks originating from the fore-

ground I/O increase the CPU load of the core that the original

I/O started. However, the placement of the coming I/O request

occurs without any knowledge about background tasks in

SPDK. As a result, the I/O processing of each active core

may be overloaded. In other words, idle cores are not used

appropriately unless the foreground I/O or background task is

distributed evenly over the CPU cores considering their loads.

On the other hand, Figure 2(b) depicts a situation where

our proposed BTS scheduler is applied and foreground I/O

tasks and background tasks do not compete for cores. In

this case, the BTS allocated background tasks to Core3 for

their background storage service other than Core1 and Core2,

which are used for foreground I/Os. This way, it is possible to

prevent an increase in the average response time of 31% for

the foreground I/O that occurred in Figure 2(a).

III. KEY-VALUE CSD

A. Architecture for Key-Value CSD using Intel SPDK

Figure 3 shows the design of two CSDs using Intel SPDK.

Figure 3(a) uses a block-based CSD that exposes the CSD to

the host as a block device to run the key-value store using the

file system on the host. On the other hand, Figure 3(b) is a

key-value CSD that implements indexing corresponding to the

storage engine in the key-value store in the CSD, and the host

accesses it using the key-value API. Figure 3(b) shows the

design of KV-CSD in which the CSD implements the storage

engine managing indexes for data inside the device, just like

the design of iLSM-SSD [24]. KV-CSD bypasses the host’s

kernel stack, minimizing I/O software overhead.

In Figure 3(a), the user’s key-value request is performed

as follows. 1 An application passes a put or get key-value

request to the key-value store. 2 The key-value store converts

the key-value requests into file I/O requests and forwards them

to the kernel-space file system. 3 The file system converts

file I/O requests into block I/O requests and passes them to

the NVMe-oF driver. 4 The NVMe-oF driver converts block

I/O into NVMe commands and sends them to the CSD using

the NVMe-oF protocol. 5 The CSD uses the SPDK to run

the NVMe-oF target and NVMe driver in the user space. The

NVMe command the CSD receives is delivered to the NVMe-

oF target in the SPDK. Then, the NVMe-oF target passes

block I/O to the BDEV, and the BDEV requests the userspace

NVMe driver. 6 The NVMe driver makes block I/O requests

to the NVMe SSD. After that, when the NVMe SSD completes

block I/O processing, it notifies completion to the application

through the same path.

In Figure 3(b), the user’s key-value request is performed as

follows. 1 Since KV-CSD implements the key-value store’s

storage engine (index manager for data) as KV VBDEV using

SPDK VBDEV, the host does not require the key-value store

or file system on its side. Thus, unlike Figure 3(a), key-value

requests are directly passed to KV-CSD. For the KV-CSD’s

storage engine, we selected a hash-based index for ease of

implementation. 2 The NVMe-oF driver converts the key-

value request into a key-value NVMe command and then

forwards it to the KV-CSD using the NVMe-oF protocol. 3

KV-CSD transfers the received key-value NVMe command to

KV VBDEV in SPDK. 4 Note that we implemented a hash-

based key-value store engine. KV VBDEV calculates the hash

value for the key in the received NVMe command. Then, KV

VBDEV searches the hash table with the value to obtain the

LBA with the same hash value (for get requests) or assigns a

new LBA (for put requests). KV VBDEV converts key-value

NVMe commands into block I/O and passes them to NVMe

BDEV. The NVMe BDEV requests the received block I/O

to the user space NVMe driver. 5 The NVMe driver delivers

block I/O to the NVMe SSD. When the NVMe SSD completes

block I/O processing, it notifies completion to the application

through the same path.

B. Key-Value API and NVMe Command Extensions

To enable user-level applications to make key-value requests

to KV-CSD using the NVMe protocol, we implemented a key-

value API library using the NVMe I/O passthrough command.

The key-value API stores the key in the starting LBA of

the NVMe command and stores the addresses of the pages

corresponding to the value using the PRP list. Refer to the

key-value API of iLSM-SSD [24] for related implementation.

IV. BACKGROUND TASK-AWARE SCHEDULING

A. Implementation for BTS scheduler

BTS is implemented using SPDK VBDEV and consists of

a monitoring module and a core selection module.

Monitoring Module: When the SPDK starts up, all cores

are idle. When a client I/O request (foreground I/O) arrives in

the SPDK, the SPDK core scheduler selects a core to handle

the requested I/O. In SPDK, the CPU core that processes

at least one foreground I/O is called an active core. Then,

the SPDK core scheduler adjusts the number of active cores

28

The monitoring module tracks
the utilization of cores in W1.

1
Run background I/O tasks on the
selected cores in (2).

Remove cores from the selected core
group for W3.

4
: Background I/O task

: Foreground I/O task

3

Select cores to be used to execute
background I/O tasks in W3.

5

Select cores to be used to execute
background I/O tasks in W2.

2

-1 : Undefined

Fig. 4. Description of the interaction between the monitoring module and the
core selection module.

according to the number of foreground I/O requests. The

number of active cores changes over time. The monitoring

module is responsible for periodically tracking which cores are

active. Also, it periodically tracks the utilization of all cores in

an array format for every W request (time window). As long

as the monitoring module does not update the CPU utilization

array too often, the monitoring overhead is not large.

Core Selection Module: The core selection module is

responsible for building a group of idle cores based on the

CPU utilization array tracked by the monitoring module and

selecting cores that process background tasks. For this, the

core selection module first selects M idle cores for every W
among all N cores in the KV-CSD and constructs an idle

core group (G), assuming that the total number of cores in

KV-CSD is N , and M is less than or equal to N . Second, the

core selection module randomly selects one core from G for

the idle core selection request if G is not empty. Otherwise,

it sorts the cores according to CPU utilization and selects the

core with the lowest utilization. Moreover, background task

migration is undesirable if all cores are too busy. It is because

the migration overhead may outweigh the performance benefits

of the migration. Thus, the BTS can implement an algorithm

to determine whether a background task is migrated based on a

certain threshold. This threshold can be set using information

such as the average and standard deviation of utilization of all

cores tracked by the monitoring module. The specific design

of the controller for dynamic task migration is left for future

work.

Figure 4 describes how the monitoring module of BTS

and the core selection module work. Assume that in time

window 1 (W1), the active cores (processing foreground I/O)

are cores 2, 4, and 5, and the non-active cores (idle cores) are

cores 1, 3, and 6. Here, an idle core means a core that does

not process foreground I/O; thus, core utilization is 0.

1 The monitoring module periodically tracks the utilization

of cores [1-6]. 2 The core selection module builds the group

G in time window W1. Here, cores 1, 3, and 6 are included

in group G. And the cores in group G are used as cores to

execute background tasks in time window W2. 3 The core

selection module runs background tasks on the cores in group

G created in time window W2. At this time, the core to be

Submit

Event
Queue

Core 6

Event
Queue

Core 3

Submit

1

2

3

3

3

4 4

5

5

Callback Function
for CompletionC

Submit BDEV request
to Event QueueS

Fig. 5. Description of the implementation of BTS’s scheduler and background
services and their interaction.

used in group G is selected randomly. 4 Group G is rebuilt

in every time window. The utilization rate of each core can

change over time. In Figure 4, in time window W2, core 3 in

group G is removed and core 4 is newly included in group G.

Then, the cores of group G built in time window W2 become

cores 1, 4, and 6. 5 Cores in group G built in time window

W2 are used as cores to execute background tasks in time

window W3.

The BTS scheduler is implemented as I/O scheduler VB-

DEV and connected between the NVMe-oF target VBDEV

and KV VBDEV, which is described in detail in Section III-A.

The background service is implemented as a background

VBDEV. The foreground I/O executed by the I/O scheduler

VBDEV can derive background tasks. The background VB-

DEV executes background tasks received from I/O scheduler

VBDEV. The background VBDEV is connected between the

I/O scheduler VBDEV and the NVMe driver VBDEV.

Figure 5 describes the execution process of background

tasks in detail. 1 The NVMe-oF target BDEV extracts in-

formation such as opcode, data buffer, key, and data size from

the foreground I/O and puts it in a BDEV request. Information

about the core currently executing this foreground I/O (core

number) is stored in the BDEV request. The core/thread

handling the foreground I/O creates an event with the BDEV

request and information/function name about the I/O scheduler

VBDEV that will process it next, and inserts it into its

own event queue. 2 The I/O scheduler VBDEV derives

background tasks while handling foreground I/Os. The core

executing the foreground I/O creates a new BDEV request and

an event including key-value VBDEV information (function

name), and inserts it into its own event queue. 3 The derived

background task is converted to a BDEV request, and then

created as an event and inserted into the event queue of

the core selected by the I/O scheduler VBDEV for future

processing. The core selection algorithm used by the I/O

scheduler VBDEV is executed by the core selection module of

BTS described in the previous section. 4 Each core runs KV

VBDEV and background VBDEV. 5 When all processing is

completed, the foreground I/O notifies NVMe driver BDEV,

KV BDEV, I/O scheduler VBDEV, and client using a callback

function. The background task notifies the completion of the

29

(a) Put workload (b) Get workload

Fig. 6. Performance evaluation of KV-CSD and RocksDB systems.

NVMe driver BDEV, background VBDEV, and I/O scheduler

VBDEV.

B. Background Storage Service Application

Offline deduplication was implemented as a representative

background storage service application using the background

VBDEV described earlier. The I/O scheduler VBDEV sends

background tasks to the background VBDEV (Dedup VB-

DEV) with the key and value’s memory address as a BDEV

request. Dedup VBDEV splits the data buffer into chunks of

a certain size and then calculates a hash value for each chunk.

Dedup VBDEV references a deduplication table that stores

hash information of each chunk. If no chunks have the same

hash value, the chunk’s location and hash value are stored,

otherwise Dedup VBDEV increments the chunk’s reference

count to indicate that the chunk is duplicated.

V. EVALUATION

A. Experimental Setup

We emulated a KV-CSD using SPDK v.21.1, connected to a

server via 10 Gbps Ethernet. KV-CSD communicates with the

host through NVMe-oF. The host system and KV-CSD use the

same machine with the same specifications (Refer to Table I),

but the number of CPU cores used was limited to 10 and 6,

respectively. We also implemented hash-based indexer BDEV

and offline deduplication VBDEV. Deduplication VBDEV

uses a chunk size of 128 bytes and a SHA-1 cryptographic

hash algorithm. The monitoring module is set up to track the

CPU utilization of all cores for every 60 requests. The cost of

updating the CPU utilization array mentioned in Section IV-A

is 90 μs.

We used “Fill sequential” and “Read sequential” of the

RockDB dbbench benchmark [25] for put (write) and get

(read) workloads respectively and with key-value pairs (4B

key and 16KB value). This size was set in consideration of

TABLE I
HARDWARE/SOFTWARE SPECIFICATIONS FOR HOST AND CSD

CPU Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz
(Host machine: 10 cores, CSD: six cores)

Memory 32GB DDR4
Disk 500 GB Samsung 970 EVO SSD

CSD interface NVMe-oF (10 Gbps Ethernet)
Software Ubuntu 20.04, SPDK v.21.10, RocksDB v.6.23

Fig. 7. Performance evaluation of KV-CSD system equipped with BTS
scheduler with respect to the increased number of threads in the workload.
Each thread runs the dbbench’s “Fill sequential” workload.

the page size of NAND flash. NAND flash based SSD is a

block device that can be written and read in units of pages

(eg, 16KB). Reading and writing of key-value pairs smaller

than this size causes I/O amplification. Therefore, we assume

that the host can read/write key-value pairs in a page unit after

buffering small key-value pairs.

B. Performance Evaluation of KV-CSD

We evaluated how much KV-CSD reduces the host’s I/O

stack overhead through kernel bypass. For this, we compared

the following two systems.

• RocksDB: This is a key-value store that runs RocksDB with

32MB buffer on the host’s file system.

• KV VBDEV: This is a system using KV-CSD equipped

with a hash structure-based storage engine.

Figure 6(a)&(b) shows the change in latency and throughput

as the amount of I/O requested increases. Figure 6(a) is a

performance comparison for the put workload. For more than

six threads, KV VBDEV outperforms RocksDB. KV-CSD

minimizes the I/O stack overhead by bypassing the kernel of

the host. However, under six threads, RocksDB shows better

performance than KV VBDEV, which is presumably due to

the performance gain from RocksDB’s internal 32MB buffer.

Figure 6(b) is a performance comparison for the get workload.

The two systems show almost similar performance. However,

RocksDB has slightly lower latency and higher throughput for

all cases, which is presumably due to the effect of the host’s

OS cache.

C. Performance Evaluation of the BTS Scheduler

We compared performance for the following three cases

with respect to the increased number of threads issuing I/O

in the benchmark. We experimented with put-only workloads

and considered offline deduplication described in Section IV-B

as a background task. Figure 7 shows the results of experi-

menting with a put workload to account for a situation where

background tasks require some computation time.

• Case 1: This implementation is a case in which only

foreground I/O is processed without a background task

service.

30

• Case 2: The background task is handled with foreground

I/O, but without the BTS scheduler.

• Case 3: The background task is handled with foreground

I/O and the BTS scheduler is used.

In all cases, the latency increases as the foreground I/O

requests increase. Case 1 has the lowest latency, while Case

2 and Case 3 have high latency. Case 1 and Case 2 increase

linearly, whereas Case 3 increases exponentially after 21 I/O

threads. In Case 3, when the number of host threads is three

or less, background task is placed in an idle thread that does

not process foreground I/O, so it actively uses idle threads and

does not interfere with foreground I/O processing. Therefore,

it shows a similar delay time to Case 1. Case 3 shows lower

latency than Case 2 when the number of I/O threads is less than

21 (normal situation), whereas Case 3 shows higher latency

than Case 2 when the number of host threads is greater than 21

(overloaded situation). In the normal situation, BTS actively

uses the idle cores to take advantage of the performance

advantage, whereas in the overloaded situation, the overhead of

the BTS scheduler outweighs the performance advantage and

shows no performance gain. Therefore, the BTS scheduler can

set the threshold described in Section IV-A 21 (threads) and

eliminate performance loss due to unnecessary task migration.

VI. CONCLUDING REMARKS

In this paper, we proposed a background task-aware sched-

uler (BTS) that can actively use idle cores for processing

background tasks to minimize the slowdown of foreground I/O

in the SPDK-based KV-CSD. Extensive evaluation has shown

that BTS enables the active use of idle cores and minimizes

the increase in response time of foreground I/O when the

background task is executed together. In addition, although this

paper investigated the effect of BTS in KV-CSD, we believe

that BTS can be applied to any storage server environment. In

particular, in a storage server environment with multiple high-

performance CPU cores, the performance improvement effect

of BTS is expected to be significant. Therefore, we will further

verify the effectiveness of BTS for various hardware settings

of storage server and KV-CSD in a future study.

ACKNOWLEDGMENTS

We thank the reviewers and our shepherd, Qing Zheng, for

their constructive comments that have significantly improved

the paper. This work was supported in part by SK hynix

research grant and by the National Research Foundation of Ko-

rea(NRF) grant funded by the Korea government(MSIT)(No.

NRF-2021R1A2C2014386) and by Institute of Information

communications Technology Planning Evaluation(IITP) grant

funded by the Korea government(MSIT)(No.2021-0-00528,

Development of Hardware-centric Trusted Computing Base

and Standard Protocol for Distributed Secure Data Box). Y.

Kim is the corresponding author.

REFERENCES

[1] Scaleflux Inc, “Scaleflux.” [Online]. Available: http://www.scaleflux.
com/

[2] Eideticom, “Noload computational storage processor,”
https://www.eideticom.com/media/attachments/2020/06/03/
noload-compression-zfs.pdf, 202020.

[3] SK hynix and Los Alamos National Laboratory, “Los Alamos National
Laboratory and SK hynix to demonstrate first-of-a-kind ordered Key-
value Store Computational Storage Device,” https://discover.lanl.gov/
news/0728-storage-device, 2022.

[4] Samsung Electronics, “Samsung Electronics Develops Second-
Generation SmartSSD Computational Storage Drive With
Upgraded Processing Functionality,” Jul 2022. [Online]. Available:
https://news.samsung.com/global/

[5] J. Do, V. C. Ferreira, H. Bobarshad, M. Torabzadehkashi, S. Rezaei,
A. Heydarigorji, D. Souza, B. F. Goldstein, L. Santiago, M. S. Kim,
P. M. V. Lima, F. M. G. França, and V. Alves, “Cost-Effective,
Energy-Efficient, and Scalable Storage Computing for Large-Scale AI
Applications,” ACM Trans. Storage, vol. 16, no. 4, Oct 2020.

[6] A. HeydariGorji, M. Torabzadehkashi, S. Rezaei, H. Bobarshad,
V. Alves, and P. H. Chou, “In-storage Processing of I/O Intensive
Applications on Computational Storage Drives,” 2021. [Online].
Available: https://arxiv.org/abs/2112.12415

[7] A. HeydariGorji, S. Rezaei, M. Torabzadehkashi, H. Bobarshad,
V. Alves, and P. H. Chou, “HyperTune: Dynamic Hyperparameter
Tuning for Efficient Distribution of DNN Training over Heterogeneous
Systems,” in Proceedings of the 39th International Conference on
Computer-Aided Design, ser. ICCAD ’20, 2020.

[8] D. Tiwari, S. Boboila, S. Vazhkudai, Y. Kim, X. Ma, P. Desnoyers,
and Y. Solihin, “Active Flash: Towards Energy-Efficient, In-Situ Data
Analytics on Extreme-Scale Machines,” in Proceedings of the 11th
USENIX Conference on File and Storage Technologies, ser. FAST ’13,
Feb. 2013, pp. 119–132.

[9] C. Lukken and A. Trivedi, “Past, Present and Future of Computational
Storage: A Survey,” CoRR, vol. abs/2112.09691, 2021.

[10] A. Barbalace and J. Do, “Computational storage: Where are we today?”
in CIDR, 2021.

[11] A. Barbalace, M. Decky, J. Picorel, and P. Bhatotia, “BlockNDP: Block-
Storage Near Data Processing,” in Proceedings of the 21st International
Middleware Conference Industrial Track, ser. Middleware ’20, 2020, p.
8–15.

[12] C. Lukken, G. Frascaria, and A. Trivedi, “ZCSD: a Computational
Storage Device over Zoned Namespaces (ZNS) SSDs,” arXiv preprint
arXiv:2112.00142, 2021.

[13] G. Frascaria, “e2bpf: an evaluation of in-kernel data processing with
ebpf,” Ph.D. dissertation, Universiteit van Amsterdam, 2021.

[14] M. Torabzadehkashi, S. Rezaei, A. Heydarigorji, H. Bobarshad,
V. Alves, and N. Bagherzadeh, “Catalina: In-Storage Processing Ac-
celeration for Scalable Big Data Analytics,” in Proceedings of the
27th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing, ser. PDP ’19, 2019, pp. 430–437.

[15] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-U. Kang,
M. Kwon, C. Yoon, S. Cho, J. Jeong, and D. Chang, “Biscuit: A Frame-
work for Near-Data Processing of Big Data Workloads,” in Proceedings
of the ACM/IEEE 43rd Annual International Symposium on Computer
Architecture, ser. ISCA ’16, 2016, pp. 153–165.

[16] S. Salamat, A. Haj Aboutalebi, B. Khaleghi, J. H. Lee, Y. S. Ki,
and T. Rosing, “NASCENT: Near-Storage Acceleration of Database
Sort on SmartSSD,” in Proceedings of the ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’21, New
York, NY, USA, 2021, p. 262–272.

[17] S. Salamat, H. Zhang, Y. S. Ki, and T. Rosing, “NASCENT2: Generic
Near-Storage Sort Accelerator for Data Analytics on SmartSSD,” ACM
Trans. Reconfigurable Technol. Syst., vol. 15, no. 2, Jan 2022.

[18] Z. Ruan, T. He, and J. Cong, “INSIDER: Designing In-Storage Comput-
ing System for Emerging High-Performance Drive,” in In Proceedings
of the USENIX Annual Technical Conference, ser. USENIX ATC ’19,
Jul. 2019, pp. 379–394.

[19] W. Cao, Y. Liu, Z. Cheng, N. Zheng, W. Li, W. Wu, L. Ouyang,
P. Wang, Y. Wang, R. Kuan, Z. Liu, F. Zhu, and T. Zhang, “POLARDB
Meets Computational Storage: Efficiently Support Analytical Workloads
in Cloud-Native Relational Database,” in Proceedings of the USENIX
Conference on File and Storage Technologies, ser. FAST ’14, 2014, p.
29–41.

[20] Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, Trevor
Bunker, Arup De, Yanqin Jin, Yang Liu, and Steven Swanson, “Willow:
A User-Programmable SSD,” in Proceedings of the 11th USENIX Sym-
posium on Operating Systems Design and Implementation, ser. OSDI
’14, 2014, p. 67–80.

[21] NGD Systems, “Newport CSD.” [Online]. Available: https://www.
ngdsystems.com/

[22] Argonboards, “LS2088A Intelligent-SSD Card,” Aug 2022. [Online].
Available: https://www.argonboards.com/ls2088a-intelligent-ssd-card

[23] Intel. SPDK. https://spdk.io/.
[24] C.-G. Lee, H. Kang, D. Park, S. Park, Y. Kim, J. Noh, W. Chung,

and K. Park, “iLSM-SSD: An Intelligent LSM-Tree Based Key-Value
SSD for Data Analytics,” in Proceedings of the IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, ser. MASCOTS ’19, 2019, pp. 384–395.

[25] Facebook, “RocksDB.” [Online]. Available: http://rocksdb.org

31

