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Abstract—High-performance object stores are an emerging
technology which offers an alternative solution in the field of HPC
storage, with potential to address long-standing scalability issues
in traditional distributed POSIX file systems due to excessive
consistency assurance and metadata prescriptiveness.

In this paper we assess the performance of storing object-
like data within a standard file system, where the configuration
and access mechanisms have not been optimised for object access
behaviour, and compare with and investigate the benefits of using
an object storage system.

Whilst this approach is not exploiting the file system in
a standard way, this work allows us to investigate whether
the underlying storage technology performance is more or less
important than the software interface and infrastructure a file
system or object store provides.

Index Terms—scalable object storage, next-generation I/O,
storage class memory, numerical weather prediction, DAOS,
Lustre

I. INTRODUCTION

Object stores are a candidate to address long-standing

scalability issues in POSIX file systems, including excessive

consistency assurance and prescriptiveness [1].

Numerical Weather Prediction (NWP) usually entails object-

like data access, as global weather fields are currently of

the order of 1 MiB in size, relatively small if compared

to traditional high-performance I/O sizes, and an advanced

indexing mechanism is required for high-performance seman-

tic discovery and access, which involves several metadata

operations. Domain-specific object stores have been developed

to implement this semantic indexing on traditional distributed

file systems in a way that satisfies current operational NWP

performance requirements [2].

With the planned resolution increases in NWP simulations,

resulting in one to two orders of magnitude larger data sets,

and the advent of general-purpose high-performance object

stores, which are specially designed for the type of object-

like operations common in NWP, adapting the domain-specific

store currently in use at ECMWF becomes an increasingly ap-

pealing pathway. In a recent study, as prior research to validate

such effort, we have assessed the performance that DAOS, a

high-performance object store which has been recently gaining

traction, can provide together with Storage Class Memory

(SCM) when tested with an ad-hoc benchmark which mimics

I/O patterns in our operational NWP use case [3].

In this paper we review these DAOS performance results,

and compare with corresponding performance results obtained

using Lustre, one of the most popular distributed file systems

in HPC, after adapting the ad-hoc benchmark to carry out the

object operations on top of a file system.

This work allows us to discriminate the benefits achieved

from using specific storage hardware as compared to the

benefits from the object store design and implementation. It

also allows us to draw conclusions of general interest on the

benefits of object stores, and gives some real use-case same-

hardware same-software data points for comparison of Lustre

and DAOS.

II. DAOS

The Distributed Asynchronous Object Store (DAOS) [4] is

an open-source high-performance object store designed for

massively distributed non-volatile memory (NVM) including

SCM and NVMe. It provides a low-level key-value storage in-

terface on top of which other higher-level APIs, also provided

by DAOS, are built. Its features include transactional non-

blocking I/O, fine-grained I/O operations with zero-copy I/O to

SCM, end-to-end data integrity and advanced data protection.

The OpenFabrics Interfaces (OFI) library is used for low-

latency communications over a wide range of network back-

ends.

DAOS is deployable as a set of I/O processes or engines,

one per physical socket in a server node, each managing

access to SCM and NVMe devices within the socket. An

engine partitions the storage it manages into targets to optimize

concurrency, each target being managed and exported by a

dedicated group of threads. DAOS allows reserving space

distributed across targets in so-called pools, a form of virtual

storage. A pool can serve multiple transactional object stores

called containers.A container is a private object address space,
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which can be modified transactionally and independently of

the other containers in the same pool. An application first

needs to connect to the pool and then open the desired

container. If successfully authorised, the application obtains a

handle it can use for its processes to interact with the container.

Upon creation, objects in a container are assigned a 128-bit

unique object identifier, of which 96 bits are user-managed.

Objects can be configured for replication and striping across

pool targets by specifying their object class. An object config-

ured with striping is stored in parts, distributed across targets,

enabling concurrent access.

III. LUSTRE

Lustre [5] is the foremost parallel file system used at HPC

site globally. It is an open-source file system, that aims to

provide high bandwidth and high availability for many users

across a wide range of hardware. Lustre provides a POSIX-

compliant interface to distributed data storage that enables

large numbers of clients to connect and use the file system

concurrently.

IV. METHODOLOGY

In this work, DAOS and Lustre have been deployed on

the NEXTGenIO research HPC system, exploiting the same

underlying hardware, and the deployments have been bench-

marked with the community-developed IOR benchmark [6]

and the Field I/O benchmark.

In brief, the Field I/O benchmark consists of a pair of

functions that perform writing and reading of weather fields

to and from a DAOS object store, using the DAOS C API.

Their design closely mimics the domain-specific object store

already employed within ECWMF, and they can be combined

and run in parallel in different ways, resulting in two different

data access patterns of interest:

• pattern A: in a first phase, writer programs are run on a

number client nodes (typically more than one per node),

and issue a sequence of write operations. Once all writers

have finished, a second phase runs, where an equal number

of reader programs are executed, issuing a sequence of

corresponding read operations. This pattern aims to assess

the maximum write or read throughput the storage can

provide to applications, mimicking a scenario where the

NWP writer applications are run separately from the post-

processing reader applications.

• pattern B: firstly, the storage is pre-populated with some

data. Following this initialisation step, half of the client

nodes employed for the benchmark issue a sequence of write

operations, while the other half issue corresponding read

operations. This pattern aims to assess the throughput stor-

age can provide in more realistic scenarios with contention

between writing and reading processes.

Due to its design, Field I/O is representative of the types of

I/O workload exhibited from real NWP workflows. Typically,

operational NWP workflows at ECMWF operate as in pattern

B, with approximately 250 HPC nodes writing simulation

output to storage while another 250 nodes read and run post-

processing tasks. However many users also run the forecasting

models or post-processing applications independently in a

manner that is equivalent to pattern A.

Field I/O is described in more detail in [3] along with a

methodology to assess object storage performance for NWP

applications, which is also adopted here. Following that

methodology, the IOR benchmark has been configured so

that each I/O process issues a single, large, I/O operation

comprising a sequence of data parts (we refer to this mode of

operation as segments mode). This enables assessment of the

maximum achievable performance if the developed application

were optimised to gather and transfer all relevant data in a

single I/O operation, and provides insight on to what extent the

storage server is able to exploit available network bandwidth

and/or storage capability when not having to deal with new

operations.

In order to execute the object-store-oriented Field I/O

benchmark against POSIX Lustre, a helper library has been

developed which implements the DAOS API using POSIX

file system concepts. DAOS Pools have been implemented as

directories hosted on the distributed file system. Containers

have been implemented as directories under the corresponding

pool directories. Key-Value objects have been implemented as

directories under the corresponding container directory. A key

is implemented as a file in the Key-Value directory, named

with the key name, and a value is stored as content in that

key file. Array objects are implemented as files under the

corresponding container directory, named with the object ID

of the Array and containing the array data.

Following this design, every write of a weather field per-

formed by the Field I/O benchmark using the helper library

will usually involve: a) write of an Array file in a Container

directory exclusive for every client process, b) check existence

of a Key-Value directory in a Container directory shared with

all processes in the client node, c) creation and write of a Key

file in a Key-Value directory shared with all processes in the

client node.

A field read will usually involve: a) check existence of a

Key-Value directory in a Container directory shared with all

client processes, b) open and read of a Key file in a Key-Value

directory shared by all client processes, c) check existence of

a Key-Value directory in a Container directory shared with all

processes in the client node, d) open and read of a Key file in

a Key-Value directory shared with all processes in the client

node, e) open and read an Array file in a Container directory

exclusive for the process.

Whereas the bandwidth metric used to quantify performance

in IOR runs has been the one provided by IOR itself, referred

to as synchronous bandwidth here, a custom bandwidth metric

for non-synchronised applications is used in Field I/O runs, the

global timing bandwidth. Both metrics are described in [3].

A. NEXTGenIO

The benchmarks we present have been conducted in

NEXTGenIO [7], a research HPC system composed of 34
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dual-socket nodes with Intel Xeon Cascade Lake processors.

Each socket has six 256 GiB first-generation Intel’s Optane

Data Centre Persistent Memory Modules (DCPMMs) config-

ured in AppDirect interleaved mode, although there are no

NVMe devices. Each processor is connected with its own

integrated network adapter to a low-latency OmniPath fabric.

Each of these adapters has a maximum bandwidth of 12.5

GiB/s.

For the Lustre benchmarking, Lustre has been deployed on

8 storage nodes (providing 16 OSTs, one per socket), plus one

node devoted to the metadata service. Both the OSTs and the

MDTs used in the file system mount an ext4 file system on

the SCM attached to their respective sockets, providing 1.5

TB of high-performance storage per OST and MDT.

To run the benchmarks against configurable amounts of

Lustre storage nodes, Lustre pools have been set up with 1,

2, 4 and 8 nodes. Before running a test, a folder is created in

the file system where all test files will be generated, and the

setstripe command is used to bind that folder to the pool

with the desired number of storage nodes.

DAOS deployments have been conducted separately in an

ad-hoc basis, removing and re-deploying with the desired

amount of storage nodes as needed. Each node used for DAOS

storage deploys a single DAOS engine per socket, using the

full ext4 file system on the Optane SCM for that socket,

and has access to all the cores available on the associated

processor. For instance, to compare to a two-node Lustre

configuration (which uses two OST nodes and one MDT node,

giving 4 OSTs overall), a two-node DAOS deployment is

created and provisioned for the benchmark.

Up to 16 nodes were employed to execute the benchmark

client processes using both sockets and network interfaces.

SCM in the client nodes was not used and did not have any

effect on I/O performance.

V. RESULTS

Performance results obtained from running the described

benchmarks against Lustre and DAOS deployments in

NEXTGenIO are discussed next, starting with an assessment

of potential achievable performance with IOR, following with

real achieved performance with Field I/O without and with

contention between writer and reader applications, and con-

cluding with an assessment of the impact of file or object size

in such applications.

A. IOR results, potential performance

In this test set, the IOR benchmark has been run against dif-

ferent amounts of Lustre and DAOS storage server nodes with

the intent to analyse maximum write and read performance a

client application can potentially achieve, and to analyse the

behaviour of the storage performance as more server nodes

are added. IOR has been run in segments mode as described

above, following access pattern A.

For each server node count the benchmark has been run

using as many client nodes, twice as many and, where pos-

sible, four times as many, with the aim to effectively make

use of the available bandwidth theoretically provided by the

server network interfaces. For each of these combinations,

the benchmark has been run with 36, 48, 72 and 96 IOR

processes per client node as these were found to result in

the best performance in preliminary tests, for both Lustre and

DAOS. Each run has been repeated 5 times to account for

variability.

The segment count has been set to 100 as it was found to be

the minimum segment count that results in reduced bandwidth

variability. The segment size has been set to 1 MiB, to match

the object or field size in the NWP use case. This segment

configuration results in files or objects of 100 MiB in size

being written and read during the benchmark runs.

The results are shown in Fig. 1. Each dot represents the

mean synchronous bandwidth obtained with the best perform-

ing number of client nodes and IOR process count for the

corresponding server node count. Hollow dots are used to

indicate cases where it was only possible to use up to twice

as many client nodes as server nodes, not four times as many

as in the rest of the benchmarks.

(a) Write (b) Read

Fig. 1: Mean synchronous write and read bandwidth results for Lustre and
DAOS for access pattern A with IOR in segments mode.

Lustre and DAOS perform similarly, resulting in comparable

write and read benchmark bandwidths, with a similar scaling

pattern. These results indicate that both storage servers and the

benchmarks have been properly configured to exploit available

storage and network resources, which has been further verified

with monitoring of resource usage during preliminary test runs.

Slightly higher bandwidths are achieved overall with Lustre

in this scenario, except in the read phase in the configuration

with 8 server nodes, which was tested with only up to twice as

many client nodes running the benchmark. The performance

limitation in that configuration is explained by the fact that,

in our test platform and with our configuration, four times

as many client nodes as Lustre server nodes are required to

exploit all available server interface bandwidth whereas, with

DAOS, only twice as many client nodes are required. Results

showing optimal client to server node ratio with Lustre have

been omitted in favour of space. For DAOS, this ratio is

addressed in [3].

Excluding this special case, write and read IOR bandwidths

obtained with both Lustre and DAOS scale linearly. For Lustre,

the benchmark bandwidth increases at a rate of approximately

6 GiB/s for write and 9 GiB/s for read per additional server

node. For DAOS, the increase is of approximately 5 GiB/s for

write and 7.5 GiB/s for read.

9



B. Field I/O results
1) Application performance with DAOS vs. Lustre: The

Field I/O benchmark, in contrast to the IOR benchmark in

segments mode, entails object-store-like I/O operations. The

data elements are small, and writing or reading a single data

object usually involves multiple I/O operations.
In this test set, Field I/O has been run with access patterns A

and B following a similar strategy to the IOR tests above, using

both Lustre and DAOS with the similar amounts of server

and client nodes. In the runs here, a maximum of twice as

many client nodes as server nodes have been employed for all

configurations.
The benchmark has been run in its default full mode, and

also in a mode which avoids use of DAOS containers called

no-containers [3]. When run against Lustre, using the helper

library to adapt Field I/O to POSIX file systems, every field

write in the benchmark in no-containers mode will involve

less metadata operations but the Array files will be written to

a single directory shared by all client processes. Field reads

will equally read Array files from that shared directory.
The object size has been set to 1 MiB, and the number of I/O

iterations per process to 2000, to reduce the impact of potential

parallel process start-up delays on bandwidth measurements.

The chosen amounts of processes per client node, which have

been found to result in best performance, have been 24 and

36 (slightly lower than the 36 and 48 found for DAOS). Each

run has been repeated 5 times.
Results for pattern A and B are shown in Fig. 2 and Fig. 3,

respectively. Note that, in both figures, Lustre results on the

left side and DAOS results on the right side use a different

y-axis scale.
Looking at DAOS results for pattern A, in Fig. 2 (c) and

(d), we can see that Field I/O in no-containers mode performs

better than the mode with containers. This is possibly due

to inefficiencies in the use of DAOS containers, as discussed

in [3]. The mode without containers scales linearly, and the

application bandwidth increases at an approximate rate of 4.5

GiB/s write and 5.5 GiB/s read per additional server node.
Lustre results in Fig. 2 (a) show that Field I/O in no-

containers mode, using the helper library to adapt to POSIX,

performs poorly for write. This is likely due to performing

all the Array file writes and reads in a single directory, as

explained above, which suffers from Lustre contention or

locking on that directory.
The full mode, which has the Array files distributed in

several Container directories, performs better and reaches up

to 7.5 GiB/s for write, but hits a limit at 4 server nodes. In

benchmark runs with more server nodes, more client nodes

are also employed, and every client node is set to execute

an additional fixed amount of I/O operations. The limitation

observed here is due to reaching to IOPs limits on the Lustre

metadata server, which we have benchmarked at around 100

KIOPs using IOR. Measured IOPs rates for the Field I/O

benchmark runs approach this limit where the scaling limit

is reached. In IOR benchmarks Lustre can scale up to much

larger bandwidths because there are less IOPs are involved.

Fig. 2 (b) shows that both Field I/O modes perform similarly

for read, and they similarly hit a limit beyond 4 server

nodes, again due to reaching maximum IOPs on the Lustre

metadata server. We postulate that both modes provide similar

performance due to the lack of locking/coherency required for

read operations in Lustre.
For results in Fig. 3 for access pattern B, where writer

applications are run concurrently with reader applications,

the write and read bandwidths need to be combined for an

approximate comparison with results with pattern A. With

DAOS, Field I/O in no-containers mode performs remarkably

well, with linear scaling and an aggregated bandwidth of

approximately 50 GiB/s with 8 server nodes, higher than the

separate bandwidths in pattern A.
With Lustre, the write and read performance behaviour of

the full mode with access pattern B is similar to that observed

in pattern A, with slightly better scaling beyond 4 nodes. The

no-containers mode performs poorly not only for write but

also for read, likely due to locking/coherency issues caused

by concurrent writes.
In terms of achieved aggregate application bandwidth, Lus-

tre with Field I/O pattern B in full mode reaches up to

approximately 20 GiB/s with 8 server nodes, close to the

read bandwidth obtained in pattern A, but far from the higher

aggregate bandwidth obtained with DAOS with pattern B in

any of the modes.
From the performance results for access pattern A, it can

be observed that the best application bandwidths obtained with

DAOS are in the same order of magnitude as those obtained

with IOR, whereas with Lustre they are approximately a fifth

of those obtained with IOR.
We have identified four factors that could contribute to this

performance difference:

• Lustre is designed for large file I/O, and has a bottleneck

in the metadata server when exposed to object-store-like

applications.

• the Field I/O application, when run against Lustre, uses

the helper library to adapt to POSIX, which implements

a custom indexing mechanism with Key-Value directories

and files. An implementation that made use of Lustre’s own

directory and file names for indexing would involve less file

metadata operations and may perform better.

• Lustre needs four times as many client nodes as server

nodes to saturate network bandwidth, but we have run the

benchmarks with only twice as many.

• DAOS has been optimised for new memory technologies

such as SCM and can bypass the block storage interface for

some operations.

2) Impact of object and file size: Fig. 4 shows bandwidth

results from runs of access pattern A with Field I/O in full

mode with Lustre, and no-containers mode with DAOS. This

time the benchmark has been run with varying object sizes

of 1, 5, 10 and 20 MiB, to assess the impact of future NWP

model resolution increases on I/O performance.
All tests have been run with a fixed configuration of 2 server

nodes and 4 client nodes, and 100 I/O operations per client
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(a) Lustre, write (b) Lustre, read (c) DAOS, write (d) DAOS, read

Fig. 2: Access pattern A, global timing write and read bandwidth results with the Field I/O benchmark.

(a) Lustre, write (b) Lustre, read (c) DAOS, write (d) DAOS, read

Fig. 3: Access pattern B, global timing write and read bandwidth results with the Field I/O benchmark.

process. Benchmarks are repeated 5 times, with the same client

process counts as in previous Field I/O runs. The results for the

5 repetitions have been averaged, with the average bandwidth

for the highest performing number of client processes per

client node shown for each I/O size tested.

(a) Write (b) Read

Fig. 4: Global timing write and read bandwidth results for access pattern A,
with the Field I/O benchmark, using 2 server nodes and 4 client nodes.

It can be observed that increasing object or file size from 1

MiB to 5 MiB has a substantial benefit for both write and read,

with both Lustre and DAOS. Beyond 5 MiB, the bandwidth

stabilizes except in Lustre reading, where it continues to

increase.

In this benchmark configuration, the bandwidths obtained

with DAOS are higher than with Lustre when using an object

or file size of 1 MiB. The two storage systems provide similar

write bandwidths for larger object or file sizes. For read, DAOS

performs better than Lustre with objects up to 10 MiB in size,

and Lustre performs better than DAOS with larger files.

This test set could be repeated using access pattern B to

investigate whether application bandwidth behaves differently

as object or file size increase under write and read contention.

Likewise, different server and client node configurations could

be investigated as well.

VI. RELATED WORK

There has been research into object stores for high-

performance I/O, including CEPH [9] and CORTX Motr

[10]. However, these have so far seen less adoption for very

intensive data creation or processing workloads in large-scale

systems. DAOS is one of the first production-ready object

storage technologies targeting HPC, with remarkable results

in recent IO-500 benchmarks [11].
Science communities have investigated object stores for

I/O operations [12], including using non-volatile memory [2].

These investigations have demonstrated the performance and

functionality benefits, however they highlight direct porting

relies on custom management of objects on storage mediums.

Domain-agnostic object stores like DAOS simplify the use of

NVM in production environments.
The work presented in this paper builds on previous research

in the areas of exploiting object storage and NVM technologies

for HPC I/O, extending understanding and knowledge on the

impact of the object store approach versus the benefits of using

high-performance I/O hardware. It also extends community

understanding of how DAOS and Lustre perform under work-

load patterns common in many applications.

VII. CONCLUSIONS

Through our benchmarking and evaluation work we have

demonstrated that Lustre and DAOS, using the same un-

derlying storage hardware, can provide similar performance

for large-scale bulk data operations, such as those the IOR

benchmark mimics and many applications have been tuned

to utilise. However, when moving to object-store-like I/O

operations and workflows, DAOS shows significant perfor-

mance benefits. We conclude that DAOS is a strong target

for a future storage platform as it demonstrates comparative

performance with traditional files systems whilst enabling

object-store functionality at high-performance.
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The access patterns produced with the Field I/O benchmark

are not particularly specific to the NWP use case or bound

to any particular file format, and therefore the findings are

applicable to other use cases repeatedly writing and/or reading

any objects or files with sizes in the order of 1 to 10 MiB from

several processes and nodes.

The results suggest that the good performance results ob-

tained with DAOS in the object-store-like NWP use case are

not purely due to the use of high-performance storage hard-

ware such as SCM, but also due to the design characteristics

of an object store and their implementation in DAOS.

Nevertheless, performance and scalability of Lustre in this

scenario should be further explored and validated by bench-

marking with larger amounts of server and client nodes,

and possibly implementing additional optimisations in the

benchmarks to better exploit file system capabilities.
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