
Revisit Data Partitioning in Data-intensive workflows

Radita Liem∗§, Shadi Ibrahim†
∗ RWTH Aachen University, Germany

† Inria, Univ. Rennes, CNRS, IRISA, France

As data volumes increase (e.g., in 2020 alone,
64.2 ZettaByte of data was generated and replicated [1]),
data-intensive workflows are now executed across multiple
platforms from the Edge to Cloud and HPC, which is
known as computing continuum. The intention behind this
execution model is to exploit data locality and reduce data
movement by executing data close to their sources while
taking into consideration the computation capacities of
different platforms.

Data-intensive workflows usually consist of multiple com-
putation stages where data flows among them. For example,
MapReduce jobs consist of two consecutive stages (Map and
Reduce) and the output of the map stage is transferred and
used as an input for the Reduce stage [2], [3]. The completion
time of a stage strongly depends on the finishing time of the
last task in this stage. Accordingly, much efforts have focused
on reducing the variation in task execution times in the same
stage by launching speculative copies of slow tasks [2] or
evenly partitioning data across tasks to mitigate data skew [4],
[5], [6], [7].

With the proliferation of data-intensive workflows such as
IoT applications, machine learning applications, and deep
learning applications; data skew remains a bottleneck in data
analytic frameworks. Many research efforts have been dedi-
cated to mitigating data skew by evenly distributing data across
tasks while considering data locality [4], [6] and relying on
high-speed networks [7], or by partitioning the data based
on the computation capacities of the nodes [8]. However,
most of these efforts focus on only two-stage applications
and don’t consider network and I/O heterogeneity within
or across platforms, making them impractical when running
multi-stage data-intensive workflows on heterogeneous and
shared environments.

As shown in Figure 1, PageRank application exhibits a
severe skew in partitioned data (i.e., shuffled data) in stage
3 and stage 4 of the application (bottom chart). This in
turn results in a noticeable variation in task execution times.
The variation is represented by the gap between the average
and maximum task execution times (top chart). We can also
observe that the variation is more obvious when the degree
of parallelism is set to 24, 32, and 40. Here, it is important
to note that, the data assigned to each task (i.e., task input)
includes the partitioned data and the data retrieved from the
storage memory (cache).

§Work done while at Inria, Univ. Rennes, CNRS, IRISA, France.

Fig. 1. The skew in partitioned data (i.e., data shuffled from previous stage
and read by each task as a part of its input) and its impact on task execution
times: We report the total size of shuffled data and task execution times in
stages 3 and 4 when running PageRank application with 2.8 GB of data on
Spark cluster of 4 nodes, deployed in Rennes site of Grid’5000. The number
of stages is set to 6 stages.

In this work in progress, we will showcase a comprehen-
sive analysis of the current state-of-the-art solutions for data
skew mitigation in several environments. Our experiments and
evaluation comprise several data-intensive workflows running
on Spark using the Grid’5000 testbed [9]. The data-intensive
workflows vary from a highly optimized WordCount applica-
tion, an iterative application like PageRank, to an SQL-based
decision support system benchmark, TPC-H with various sizes
and configurations.

ACKNOWLEDGMENTS

This work is supported by the ANR KerStream project
(ANR-16-CE25-0014-01). Experiments presented in this pa-
per were carried out using the Grid’5000 testbed, supported
by a scientific interest group hosted by Inria and including
CNRS, RENATER, and several Universities as well as other
organizations (see http://www.grid5000.fr/).

http://www.grid5000.fr/


REFERENCES

[1] David Reinsel, John Rydning, and John F Gantz. Worldwide global data-
sphere forecast, 2021–2025: The world keeps creating more data—now,
what do we do with it all. IDC Corporate USA, 2021.

[2] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM, 51(1):107–113,
2008.

[3] Hai Jin, Shadi Ibrahim, Li Qi, Haijun Cao, Song Wu, and Xuanhua Shi.
The MapReduce Programming Model and Implementations, chapter 14,
pages 373–390. John Wiley Sons, Ltd, 2011.

[4] Shadi Ibrahim, Hai Jin, Lu Lu, Song Wu, Bingsheng He, and Li Qi.
Leen: Locality/fairness-aware key partitioning for mapreduce in the cloud.
In 2010 IEEE Second International Conference on Cloud Computing
Technology and Science, pages 17–24, 2010.

[5] Benjamin Gufler, Nikolaus Augsten, Angelika Reiser, and Alfons Kemper.
Handling data skew in mapreduce. Closer, 11:574–583, 2011.

[6] Shadi Ibrahim, Hai Jin, Lu Lu, Bingsheng He, Gabriel Antoniu, and Song

Wu. Handling partitioning skew in mapreduce using leen. Peer-to-Peer
Networking and Applications, 6(4):409–424, 2013.

[7] Zeyu He, Zhifang Li, Xiaoshuang Peng, and Chuliang Weng. Ds 2:
Handling data skew using data stealings over high-speed networks. In
2021 IEEE 37th International Conference on Data Engineering (ICDE),
pages 1865–1870. IEEE, 2021.

[8] Qi Chen, Jinyu Yao, and Zhen Xiao. Libra: Lightweight data skew
mitigation in mapreduce. IEEE Transactions on parallel and distributed
systems, 26(9):2520–2533, 2014.

[9] Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier, Frédéric
Desprez, Emmanuel Jeannot, Emmanuel Jeanvoine, Adrien Lèbre, David
Margery, Nicolas Niclausse, Lucas Nussbaum, Olivier Richard, Christian
Pérez, Flavien Quesnel, Cyril Rohr, and Luc Sarzyniec. Adding vir-
tualization capabilities to the Grid’5000 testbed. In Cloud Computing
and Services Science, volume 367 of Communications in Computer and
Information Science, pages 3–20. Springer International Publishing, 2013.


	References

