Data Lifecycles for Optimizing Data Movement

Hyungro Lee, Jesun Firoz, Nathan R. Tallent
Pacific Northwest National Lab
{hyungro.lee,jesun.firoz,tallent} @pnnl.gov

Introduction. Scientific exploration is increasingly dependent
on the convergence of scientific modeling, data analytics, and
machine learning. The result is data-intensive workflows that
are composed of multiple stages of computation and com-
munication between distributed and heterogeneous computing
resources. Data movement through storage systems is fre-
quently the most significant bottleneck, which is compounded
by increasingly large data volumes and rates. To identify op-
portunities for optimizing data movement, we are developing
novel workflow telemetry that highlights data objects’ dynamic
flow, reuse, lifetime, and locality. Our objective is to enable
modeling and reasoning about task-data locality, especially
compared to default placement and data exchange, and the
scheduling of anticipatory data movement that selects what
data should be staged in memory and when.

Related Work. The previous work on improving I/O perfor-
mance for scientific workflows has focused on the hardware
aspect of data movement such as memory, storage, or network
and has overlooked logical data information to expose. For ex-
ample, techniques for NVRAM-optimized filesystems [1] and
burst buffers [2] have shown /O streaming and separation, but
study on data life cycles is scarce [3] to manage bottlenecks.

Approach. To gain insight about the data access pattern,
our approach involves construction of a “producer-consumer”
graph as a first step to capture the data life cycle. Vertices
in this graph may denote either tasks or data objects. For
example, the simulation tasks in DeepDriveMD [4] can be
considered as “producers” that generate data objects and
the aggregator task reads these data as “consumers”. While
gathering telemetry, we record the access frequencies of the
data blocks (at the byte level). An edge between a pair of
vertices depicts the relationship between either a producer task
and the data object generated, or a consumer task and the data
object read. The access frequency of each block then can be
placed as a weight on the edges to denote the importance of
the link. We leverage a remote I/O infrastructure, TAZeR [5],
to intercept and record POSIX I/O calls. Alternatively, as our
next objective, we are currently pursuing leveraging HDF5
file semantic information to track accesses in an intelligent
way. In doing so, we want to infer whether a subser of data is
accessed rather than the whole dataset in the downstream tasks
and enable only bringing in (cache) the relevant part of the data
accessed, rather than the whole dataset. We anticipate that by
co-locating data with computation based on the access and
by exploiting the deep memory hierarchy to turn the network
transfers to memory transfers as much as possible, the penalty
associated with staging will be reduced by transforming the
network-bound workload to the memory-bound workload.

Meng Tang, Anthony Kougkas, Xian-He Sun
Ilinois Institute of Technology
mtang11@hawk.iit.edu, {akougkas,sun}@iit.edu

aggregated.h5
sim_emulator. py.

M residue_100_output.hS

M residue_100_output.hS

o M residue_100_output.hS
aggregate.py;

M residue_100_output.hS

M residue_100_output.hS

residue.100_ outputins{(0)

Fig. 1. Data Flow example between Molecular Dynamics Simulation and
data preprocessing for ML Training (Concatenation) in DeepDriveMD. Here,
nodes represent tasks (red color) and data objects (blue color). The thickness
of the links represents data volumes (block access frequency) (grey color).

Results. We collected telemetry from an exemplary workflow,

DeepDriveMD, and created a Sankey diagram (Figure 1)
to demonstrate the data life cycle. Here, captured data flow
between “a producer” task (simulation.py) and “a consumer”
task (aggregator.py) reveals actual data movement between the
simulations and the preprocessing steps for ML training.

Ongoing/Future work. Our current workflow for capturing
data life cycle with TaZeR tracks byte-level information with
storage interfaces such as POSIX, disregarding any oppor-
tunity for leveraging semantic information found in HDFS5.
To extract the data’s logical names and address (e.g., logical
index), we are currently working with the Hermes [6] 1/O
buffering middleware that interfaces with HDF5’s high-level
data abstractions. We anticipate that the results will both
inform users and identify optimization opportunities to maxi-

mize data reuse and locality and minimize data movement.
REFERENCES

[1] P. Fernando, A. Gavrilovska, S. Kannan, and G. Eisenhauer, “Nvstream:
Accelerating hpc workflows with nvram-based transport for streaming
objects,” in Proceedings of the 27th International Symposium on High-
Performance Parallel and Distributed Computing, 2018, pp. 231-242.

[2] D. Koo, J. Lee, J. Liu, E.-K. Byun, J.-H. Kwak, G. K. Lockwood,
S. Hwang, K. Antypas, K. Wu, and H. Eom, “An empirical study of
i/o separation for burst buffers in hpc systems,” Journal of Parallel and
Distributed Computing, vol. 148, pp. 96-108, 2021.

[3] F. Chowdhury, F. Di Natale, A. Moody, K. Mohror, and W. Yu, “Dfman:
A graph-based optimization of dataflow scheduling on high-performance
computing systems,” in 2022 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 1EEE, 2022, pp. 368-378.

[4] H. Lee, M. Turilli, S. Jha, D. Bhowmik, H. Ma, and A. Ramanathan,
“Deepdrivemd: Deep-learning driven adaptive molecular simulations for
protein folding,” in 2019 IEEE/ACM Third Workshop on Deep Learning
on Supercomputers (DLS). 1EEE, 2019, pp. 12-19.

[5] J. Suetterlein, R. D. Friese, N. R. Tallent, and M. Schram, “TAZeR:
Hiding the cost of remote I/O in distributed scientific workflows,” in
Proc. of the 2019 IEEE Intl. Conf. on Big Data. 1EEE Computer Society,
December 2019, pp. 383-394.

[6] A. Kougkas, H. Devarajan, and X.-H. Sun, “Hermes: a heterogeneous-
aware multi-tiered distributed i/o buffering system,” in Proceedings of
the 27th International Symposium on High-Performance Parallel and
Distributed Computing, 2018, pp. 219-230.

