2022 IEEE/ACM International Parallel Data Systems Workshop (PDSW)

DENKYV: Addressing Design Trade-offs of
Key-value Stores for Scientific Applications

Safdar Jamil', Awais Khan?, Kihyun Kim!, Jae-Kook Lee?, Dosik An?
Taeyoung Hong?, Sarp Oral?, Youngjae Kim'
'Dept. of Computer Science and Engineering, Sogang University, Seoul, Korea
20ak Ridge National Laboratory, ®Korea Institute of Science and Technology Information
{safdar, realltd16, youkim} @sogang.ac.kr, {khana, oralhs} @ornl.gov, {jklee, dsan, tyhong} @Kkisti.re.kr

Abstract—High-performance computing (HPC) facilities have
employed flash-based storage tier near to compute nodes to
absorb high I/O demand by HPC applications during periodic
system-level checkpoints. To accelerate these checkpoints, proxy-
based distributed key-value stores (PD-KVS) gained particular
attention for their flexibility to support multiple backends and
different network configurations. PD-KVS rely internally on
monolithic KVS, such as LevelDB or RocksDB, to exploit the
KYV interface and query support. However, PD-KVS are unaware
of the high redundancy factor in checkpoint data, which can be
up to GBs to TBs, and therefore, tend to generate high write
and space amplification on these storage layers. In this paper,
we propose DENKYV which is deduplication-extended node-local
LSM-tree-based KVS. DENKV employs asynchronous partially
inline dedup (APID) and aims to maintain the performance
characteristics of LSM-tree-based KVS while reducing the write
and space amplification problems. We implemented DENKV
atop BlobDB and showed that our proposed solution maintains
performance while reducing write amplification up to 2x and
space amplification by 4x on average.

Index Terms—High Performance Computing,
Stores, Log-Structures Merge Tree, Deduplication

Key-Value

I. INTRODUCTION

HPC applications are often compute and data intensive and
frequently run simulations for longer times. They perform
periodic checkpointing to store their internal states to high
I/0 bandwidth parallel file systems (PFS) [1]. However, stor-
ing checkpoints on PFS presents significant difficulties when
scaling to meet the demands of large scientific applications due
to the considerable overhead induced. To absorb the high I/O
demand, it has become common to deploy additional storage
layers, often flash-based, to handle high-bandwidth workloads
such as checkpointing. These storage layers have a variety of
deployment models such as compute node-local (CN) storage
as in Summit [2]-[4] or near-node storage, often known as
Burst Buffers (BB) as in Sierra [3], [5].

Most HPC applications use system-level checkpointing li-
braries, which generate a huge amount of redundant check-
point data [6], [7]. To verify this claim, we investigated
the redundancy ratio of the 10 HPC applications at Nurion
supercomputer [8] and analyzed their sample data using an
in-house deduplication analysis tool and present the results
in Table I. Furthermore, several studies [9]-[12] tend to
accelerate checkpointing by adopting a distributed KV in-
terface atop CN-local and BBs. Notably, distributed KVS

978-1-6654-7562-4/22/$31.00 ©2022 IEEE
DOI 10.1109/PDSW56643.2022.00009

20

. HPC Application

Proxy Distributed Key-Value Store (PD-KVS)

[[LsMTree [] [[Hash Table [f [[Mass Tree]

Parallel File System (PFS)

GPFS, Lustre etc..
Figure 1: Target HPC environment with compute-node local NVMe
SSDs and KVSs.

are categorized as either natively-distributed or proxy-based
KVS [10]. Proxy-based distributed KVS (PD-KVS) [9]-[15]
has received special attention for their flexibility to support
multiple backends and different network configurations.

PD-KVS relies internally on monolithic KVS!, such as
LevelDB [16] or RocksDB [17], to exploit the KV interface
and query support. These KVS are unaware of high redun-
dancy factor in checkpoints, ranging from GBs to TBs, and
therefore tend to generate high write amplification (WA) and
space amplification (SA) on these storage layers, where the
storage capacity is limited. Furthermore, log-structured merge
(LSM)-tree-based KVSs are unfit for node-local storage due
to high internal WA and SA, which degrades performance. A
way around this problem is to integrate redundancy reduction
techniques such as deduplication (dedup) in the HPC applica-
tion. However, it requires modifying the application and cannot
control the internal WA and SA of KVS. For instance, on
average internal WA of LSM-tree-based KVS ranges from 10x
- 30x on average, primarily affecting KVS throughput [18],
[19]. Integrating deduplication in the KVS backend offers
several benefits, such as reduced checkpoint data, minimal WA
and SA, and intelligent storage utilization [20]-[23].

Thus, we propose a deduplication-extended node-local
LSM-tree-based KV-Store (DENKV), to guarantee high per-
formance for HPC checkpointing applications. DENKYV elim-
inates redundancy to smartly utilize the storage of space-
constrained node-local devices. We carefully identified the
level of LSM-tree to integrate the APID and aim to main-

Hereafter, we will refer to monolithic KVS to simply KVS.

‘Put op [KV Pair sl (Mf_ﬁ‘imc.l'_‘j‘g;n
: \\\\\ Background
mT \} | IMT__| Thread Pool
* —
DRAM - %% . é

Ahead

(oo)
Log
(WAL) .

MT: MemTable IMT: InmutableMemTable SST: Sorted String Table

Ln

Figure 2: Description of LSM-tree data structures.

tain the performance properties of LSM-tree-based KVS.
APID leverages transparent asynchronous dedup using the
FLUSH operation by the background thread pool. We extended
BlobDB [24] to implement the proposed ideas. BlobDB [17]
is based on vanilla RocksDB with key-value separation design.
Evaluation with the in-house simulation of checkpointing data
of HPC applications revealed that DENKV reduces the WA and
SA by upto 2x and 4 x without jeopardizing the performance.

II. BACKGROUND AND MOTIVATION
A. Proxy-based Distributed KVS (PD-KVS) in HPC

Figure 1 depicts an HPC environment where each compute
node (CN) has a local NVMe SSD, and on top of it, a
PD-KVS can be adopted to fully exploit the performance
characteristics of these NVMe SSDs and provide significant
query performance. PD-KVS support multiple backends and
network configurations, making them a suitable candidate to
be adopted in HPC facilities. With different backend storage
engines in PD-KVS, applications can benefit according to
their requirements. For instance, applications that support
range queries will benefit by using a MassTree-based stor-
age engine [25] and applications dealing with write-intensive
applications can take advantage of LSM-tree-based storage
engines [16], [17], [26].

B. Log-Structured Merge (LSM)-Tree

Figure 2 illustrates the architecture and operational flow
of the representative LSM-tree-based KV store, RocksDB at
Facebook [17]. LSM-tree consists of memory and storage-
based components. Memory components include in-memory
skiplist-based MemTables, which are mutable, and appli-
cations can write/update KV pairs directly in MemTables.
When the MemTable reaches a certain size threshold, it is
converted into an Immutable Memtable (IMT) and eventually
written to level O by employing asynchronous threads from
the background thread pool, as shown in Figure 2. Storage
components are formed by Sorted String Tables (SSTs) files
and stored in terms of increasing size levels. The SSTs in level
0 are unsorted and can have overlapping key ranges; however,
SSTs in higher levels are sorted and do not have overlapping
key ranges. A compaction operation is triggered when a level
reaches a size threshold to maintain the sorted order of SSTs
and lookup performance of the LSM-tree. The compaction

21

operation merges and sorts the SSTs from particular level n to
level n+1 and is performed by the asynchronous threads from
the background thread pool. RocksDB employs Write-Ahead-
Log (WAL) for failure consistency of memory components.
LSM-tree-based KVSs suffer from high WA and SA. WA
occurs when KVS performs more write operations than the
application intended. It happens due to internal operations of
LSM-tree such as compaction. Meanwhile, SA occurs when
KVS occupies more space than the application requires. It
mainly happens when the workload is update-intensive, and
higher levels of the LSM-tree still store the stale data. As
LSM-tree stores data in terms of levels, lower levels always
have the latest/valid KV pairs, which makes the KV pairs
stored at the higher level invalid/stale and compaction oper-
ation is responsible for reclaiming those stale KV pairs. WA
shortens the lifespan of SSD due to the high number of writes,
and SA requires unnecessary SSD space, so they limit the
adoption of SSD as CN-SSD in the HPC environment.

C. Motivation

As shown in Figure 1, HPC applications store their interme-
diate state and checkpoint data in the compute-node local SSD
(CN-SSD) by exploiting PD-KVS. PD-KVS rely on mono-
lithic KVS to exploit performance characteristics of CN-SSD
and query support. PD-KVS can deploy multiple independent
instances of KVSs in the HPC environment to support the
distinct needs of the HPC applications. The HPC application
generates bursty write patterns when checkpointing the state,
and to absorb these write patterns, LSM-tree-based KVSs are
adopted due to being highly write optimized. However, LSM-
tree-based KVSs suffer from high WA and SA, which limits
their adoption due to the limited capacity of the CN-SSD. Thus
in this work, we aim to incorporate data dedup in CN-SSD-
based PD-KVSs only to store the unique checkpoint data.

This paper solves the aforementioned WA and SA by
running dedup in the storage engine of the LSM-tree-based
KVS. We focus on LSM-tree-based KVS as they are highly
write optimized and argue that they are a suitable candidate
to be adopted in PD-KVS to store intermediate and check-
point data on KVSs. However, the incorporation of dedup in
LSM-tree comes with its own challenges. First, identifying
a suitable component to adopt dedup plays a vital role in
the performance of the LSM-tree. If dedup is incorporated in
memory components, it impedes the performance of the LSM-
tree due to additional dedup overhead. Second, integrating
dedup at the higher levels of storage components, level 1
onward, will not be efficient in reducing WA and breaking the
structural constraint of the LSM-tree. LSM-tree only allows a
single valid instance of the KV pair at a particular level, and
storing multiple valid instances of KV pair based on the value
chunks will lead to the increased complexity of the compaction
operation and results in write stalls.

III. REDUNDANCY IN HPC APPLICATION

HPC applications often generate massively repeated data
(checkpoints) during execution and as an output. This dupli-

Table I: Deduplication analysis of 10 applications on Nurion Super-
computer hosted at KISTI facility. DR denotes duplication ratio.

[App. [Size | DR][App. [Size | DR |
Abaqus 386 GB | 41.8% CESM 273 GB | 25.7%
Charmm | 382 GB 23.1% Gaussian | 293 GB | 20.4%
Lammps 24 GB 42.5% MOM 323 GB | 53.9%
MPAS 197 GB 81.7% Siesta 566 GB | 52.1%
VASP 1 TB 27.3% ANSYS 544 GB 23.8%

cate data limits the usage of CN-SSD, which is constrained
by limited storage capacity. For example, a compute node
in Summit supercomputer has only 1.6 TB of storage ca-
pacity [3]. Whereas HPC applications, including physics and
scientific applications, generate several TBs of data during
the simulation lifetime. To investigate the duplicate ratio of
the HPC application, we analyzed the 10 HPC applications
consuming the most CPU cycles at the Nurion Supercomputer
hosted at the Korea Institute of Science and Technology
(KISTI) for one year and captured a sample of their generated
data. We analyzed the application data using an in-house
dedup analysis tool that we implemented based on FS-C [7].
Nurion has a total theoretical performance of 25.7 petaflops,
which was ranked 11th in the world in June 2018 [3]. Table 1
shows the sample size collected within 10 minutes from each
application’s generated data. Meanwhile, HPC applications
execute in terms of days, which can lead to a vast amount
(TBs-PBs), while the CN-SSDs have limited capacity [3].

Table I also shows the ratio of duplicates in terms of
percentage for the data generated by the HPC applications.
This duplicate ratio typically ranges between 20% to 81%.
Furthermore, it has been studied that system-level checkpoint-
ing within HPC systems generates over 80% of duplicate
data [6]. Note that storing duplicate data limits not only the
capacity of the CN-SSD but also affects the performance of the
HPC application. For instance, when the capacity constraint is
reached in the CN-SSD, the system will flush the data to the
parallel file system (PFS), which is usually employed on top of
slow storage devices, typically over HDDs. On the other hand,
only storing the unique data at CN-SSD will help achieve
efficient utilization of these storage devices while reducing
the flush time over PFS.

IV. DENKV: DESIGN AND IMPLEMENTATION
A. System Overview

We proposed DENKYV, a dedup-enabled LSM-tree-based
KVS, which employs asynchronous partially inline dedup
(APID). We carefully identified the level of LSM-tree to
integrate the APID without compromising the performance.
APID leverages the transparent asynchronous FLUSH opera-
tion by the background thread pool to perform dedup operation
when IMTs are written to the level O of the LSM-tree. APID
uses the fixed-size chunking mechanism for value partitioning
and employs SHAI1 for fingerprinting. To manage the dedup
metadata, APID introduces a chunk information table (CIT),
which helps identify the duplicate value chunks. Furthermore,
DENKYV adopted the KV-separation approach to maintaining

22

Chunk Values

1KV Pair S\ State Change (MT —> IMT —>SST) | |

Asyc. Partly Inline
- - Deduplication --
i Fixed-size Value Chunking
SHA1-based |[Duplicate
Lookups

FingerPrintin

Backgroun

% _,[Flush IMemtable [APID v
o =T D s)y,
D $ K, Pir list "
K [P, P1] S N [] DpEnkv [
l [P] Z > Writing V;Iue —_————
(KLP] . . chunks in UVL NVMe SSD
Pointers to Meta-SSTs N A
UVL Offset 0\\\\ K

Unique Value Log (UVL)

Figure 3: Design overview of DENKV and operational flow of PUT
and FLUSH operation in DENKV.

the structural constraint of the LSM-tree and introduced Meta-
SSTs and unique value log (UVL). In the KV-separation
technique, the keys and values are stored separately. The
reason for adoption of KV-separation design is manifolds:
First, the value chunks are stored separately based on the
chunk size; meanwhile, the corresponding key can store the
list of value chunk pointers in Meta-SSTs. Second, with the
KV-separation technique, SSTs are relatively smaller in size,
thus reducing the data movement during compaction operation
and resulting in less WA.

B. Data Structures

Figure 3 unboxes the internals of DENKV within a single
compute node of HPC system. DENKV consists of memory
and storage components. DENKV introduces chunk informa-
tion table (CIT), which manages the dedup metadata. CIT is a
hash table that stores the value chunks’ fingerprint (20 bytes),
offset (8 bytes), and reference count (4 bytes). A single entry
in CIT is comprised of 32 bytes and the total size of CIT
will depend on the workload size. CIT is updated during
the FLUSH and compaction operations by the background
thread pool. Additionally, DENKV introduces Meta-SSTs and
the UVL at storage layer. Meta-SSTs store the keys and list
of value chunk pointers that points at the corresponding value
chunk associated with the key. The format of Meta-SSTs
is similar to the traditional SSTs and comprised of filter,
metadata, and data blocks. The filter block is a bloom filter
which helps in GET queries, while the metadata blocks store
the additional metadata related to the SSTs such as number
of KV pairs, size of the SSTs, starting and ending range, and
so on. The data blocks stores the keys and list of value chunk
pointers as shown in Figure 3. The UVL is a log-based file
which stores the value chunks based on dedup chunk size and
comprised of value chunk and the reference count, represented
as H in Figure 3.

C. Put Operation

The operational flow of the PUT and FLUSH operations
of our proposed design is shown in Figure 3. When the HPC
application places a PUT request, it follows the path of the

PUT operation of the traditional LSM-tree and writes the
KV pair to MT, as shown by step 0 of Figure 3. When
MT reaches a certain size threshold, it is converted to IMT
(step @). At step Q, the background thread pool selects the
IMTs and passes them to the APID, step 9 During FLUSH
operation, APID takes each KV pair from IMT and chunks
the value part of the KV pair, based on the chunk size, and
the fingerprint is computed. When the fingerprint is obtained,
the CIT is traversed to match the fingerprint. If a unique value
chunk is encountered, it is written to the UVL (step e), and
an entry is created in the corresponding Meta-SST at level 0
(step @). When the unique value chunk is written to UVL
and Meta-SST, the dedup metadata is updated at the CIT. If a
duplicate value chunk is detected, the offset stored at the CIT
is attached to the pointer list of the key and added to the Meta-
SST. DENKYV supports large KV pairs for dedup by chunking
the values into fixed size chunks and storing unique chunks
at the UVL as shown in Figure 3. This mechanism obtains
the offset of each chunk maintained at the CIT and LSM-tree
with the corresponding key. The P* in Figure 3 represents an
offset pointer of the value chunk in Meta-STT.

D. Get Operation

The GET operation also follows the same path as the tra-
ditional LSM-tree-based KVS. When a GET request is placed
by the HPC application, it starts by looking for the requested
KYV pair in the MT, and if found, it returns. Otherwise, the GET
operation will move to the IMTs. If the KV pair is not found
in the memory components, the GET request will traverse the
Meta-SSTs to another level. Each Meta-SST employs a bloom
filter to identify if it contains the requested KV pair or not. If
the bloom filter returns true, then the particular Meta-SST is
traversed, and the corresponding KV pair is reconstructed by
fetching the value chunks from the UVL in the same order the
value chunk pointers are stored on the list. If the bloom filter
returns false, the GET request moves to another Meta-SST and
reads its bloom filter. During the GET operation, there is no
interaction with CIT for reconstructing the KV pair. The GET
operations are based on keys, and APID does not store any
information regarding keys.

E. Garbage Collection

Although DENKV only writes the unique chunks at the
UVL, if a chunk is not being referred by any of the keys
in the LSM-tree, that chunk needs to be removed and the
space utilized by that chunk must be reclaimed. We introduce
garbage collection in DENKV to reclaim the obsolete chunk.
We integrated garbage collection with compaction operation
as proposed in BlobDB [24]. During compaction operation,
BlobDB reclaims obsolete values from the blob files if an
update operation has been encountered for the corresponding
key of the value. However, in DENKYV, a single chunk in UVL
can be pointed by several keys in the LSM-tree. Therefore,
during compaction, we only update the reference count of the
chunk maintained within the UVL (H in UVL of Figure 3).
At the end of compaction, an asynchronous garbage collection

23

thread traverses the UVL, reclaims the chunks with zero
reference count, and updates CIT by deleting the entries of
reclaimed chunks.

FE. Performing Analysis on Node-local KV

Key-value and NoSQL columnar data stores are better
suited for several graphs and simulation-based analytical work-
loads and applications. Performing search-rich querying on
such KV stores is easier and much faster than traditional
file system approaches. The CN-SSDs offer opportunities to
analyze and gain insight into intermediate data to optimize
the HPC applications. For instance, various HPC applications
perform computation and analysis in the Map-Reduce <key,
value> style [27] to obtain insights into the data generated
during simulations. Therefore, by adopting the KV interface,
HPC applications gain immediate access to perform queries
on the intermediate data and get the specific insights required.

V. EVALUATION
A. Experimental Setup

We performed all the experiments on a Linux machine with
4 Intel Xeon(R) E5-4640 v2 CPUs @ 2.20 GHz with 10
physical cores per CPU node, 80 MiB last level cache, and
256 GiB DDR3 DRAM. The operating system is 64-bit Linux
5.15.0.33, with an EXT4 file system. The machine is equipped
with 1 TB Samsung 970 EVO SSD.

1) Implementation: DENKV is implemented on top of
BlobDB [24] 7.3.0 which implements the key-value separation
in RocksDB [17]. BlobDB is optimized for write and read
operations and shows better performance than the traditional
RocksDB. Similar to BlobDB, DENKV maintains foreground
and background threads where foreground threads perform
operation on mutable data which can be directly manipulated
by the HPC applications. In DENKV, the background thread
pool is divided into FLUSH threads and compaction threads.
FLUSH threads perform KV separation, dedup operation and
then write the keys and value pointers to the Meta-SSTs of
LSM-tree, while only unique value chunks are written to the
UVL. We compare the three implementations below.

e RocksDB: Traditional LSM-tree-based KVS where storage
components are composed of SSTs which store KV pairs
together. Additionally, we utilize traditional RocksDB to
compare the performance difference between baseline LSM-
tree structure and KV separated design.

e BlobDB: KV separated design of RocksDB where keys and
value pointers are stored at the SSTs, while the values are
stored at the value-log, named Blobs. BlobDB maintains
the basic design of the LSM-tree means, it has memory and
storage components where FLUSH operation is responsible
for separating keys and values.

e DENKYV: Our proposed design which introduces APID.
Similar to BlobDB, DENKV also employed KV separation
technique while instead of storing the complete values of the
corresponding KV pair, our solution only stores the unique
value chunks at the UVL.

] RocksDB N BIobD% 3 DENKV

o
S
%,

N
S
i

%
7777777777772

Throughput (KIOPS)
n
o

7777777777772
7777777777777

)

N
\
\
|
\
\
\
Ll

7777727777772

Y

o
o

% 30% 60% 90%

Dedup Percentage at workload
(a) 4KB KV Pairs

0% 30% 60%

Dedup Percentage at workload
(b) 1MB KV Pairs

Figure 4: Performance analysis of DENKV with varying KV pair
sizes and dedup ratio.

2) Benchmarks and Workload: We built an in-house bench-
mark which simulates the dedup patterns of HPC applications
as shown in Table I. Specifically, with our benchmark we
can adjust the dedup ratio, the number of KV pairs and
value size. The benchmark uses single application thread to
perform requests. For workloads, we generated two categories
of KV pairs: small (4 KB KV pairs) and large (1 MB KV pairs)
where the key size is fixed to 16 bytes while the value size
varies. For small workload, we used 1 Million KV pairs
while for the large workload, we only used 100 thousand
KV pairs for the evaluation. The dedup ratio evaluated in these
experiments include 0%, 30%, 60%, and 90%. We selected
these dedup ratio considering the dedup ratios presented by
the HPC applications in Table 1.

B. Results

We present the performance analysis of proposed DENKV
in comparison to baseline RocksDB and BlobDB. We also
show the WA and SA evaluation of the compared KVSs.

1) Performance analysis: Figure 4 shows the evaluation
results in terms of throughput of 4KB and 1MB sized KV pairs
with varying dedup ratios. It can be observed that DENKV has
the worst performance in comparison to baseline RocksDB
and BlobDB for small KV pairs with a 0% dedup ratio as
shown in Figure 4(a). It is due to extra dedup operation. With
additional dedup operations, the background flush threads have
larger critical sections and take longer time than baseline
RocksDB and BlobDB. The dedup operations (fingerprinting
and dedup metadata update) are the major cause of additional
execution time for background FLUSH threads. However,
these overheads can be overcome by adopting parallelized
fingerprinting methods and an optimized concurrent-friendly
dedup metadata table (CIT).

Furthermore, it can be seen that with an increasing dedup
ratio, DENKV improves the performance and outperforms
baseline RocksDB when the dedup ratio is 90% with small
KV pairs. This is due to less number of I/O operations
being performed by DENKV and only CIT and Meta-SSTs
are updated, which reduces the overall I/O size and thus
improves the performance. Additionally, DENKV outperforms
RocksDB regardless of the dedup ratio with large KV pairs.
This is because DENKV is implemented atop BlobDB, and
due to its KV separation design both DENKV and BlobDB
are optimized for large KV pairs. Notably, DENKV also

24

SA_B 4 SAD

[WA_R WA_B WA_D

* SA_R

[y »
o 12 120 8
5]
i= o]
il o >
gs® . 80 3
s | s
£ 4 SIS 40 £
< N 5]
2 2
E olL IR LI ; | , 5
0% 30% 60% 90% 0% 30% 60% 90% 2

Dedup Percentage at workload Dedup Percentage at workload

(a) 4KB KV Pairs (b) TMB KV Pairs

Figure 5: WA and SA analysis with varying KV pair sizes and dedup
ratio. WA_R and SA_R presents WA and SA of traditional RocksDB,
WA_B and SA_B presents BlobDB, and WA_D and SA_D presents
DENKV.

outperforms BlobDB when the dedup ratio is 90% as explained
above as shown in Figure 4(b).

2) WA and SA analysis: Figure 5 shows the WA and SA
analysis. The right side Y-axis of Figure 5 shows the WA,
while the left side presents the SA results. We measured
the WA during the execution of each workload using the
Linux system-stat command. It can be observed that traditional
RocksDB suffers from huge WA in all workload meanwhile
DENKV and BlobDB has significantly less WA due to KV
separation design. DENKV and BlobDB both do not include
the value parts for the compaction operation, which helps
mitigate the WA. Note that DENKV has even less WA than
BlobDB with an increasing dedup ratio in both workloads.
With a high dedup ratio, a smaller number of writes are
performed to the UVL of the DENKYV, thus less WA.

We measured the SA as the total storage space occupied by
all the KVSs after the execution of the workloads. Note that
DENKV has the least storage requirement with an increasing
dedup ratio while RocksDB and BlobDB have constant storage
utilization regardless of the dedup ratio. With increasing dedup
ratio, DENKYV only stores the unique value chunks in the UVL
while storing all the keys and associated value chunk pointers
in the Meta-SSTs. Since the keys and value chunk pointers are
small, only a few Meta-SSTs are created and thus less storage
utilization.

VI. CONCLUSION

In this work, we showed that HPC applications generate
highly redundant data by a thorough dedup analysis of the 10
HPC applications at the Nurion supercomputer at KISTI. We
argue that adopting storage optimization techniques at PD-
KVS based KVSs would help reduce the storage utilization
and improve the performance of HPC applications. Thus,
we proposed DENKYV, deduplication extended node-local key-
value store to guarantee high-performance for HPC check-
pointing applications. DENKYV introduces asynchronous partly
inline deduplication (APID) at FLUSH operation. We designed
and implemented DENKV atop BlobDB and showed that our
proposed solution maintains performance while reducing WA
up to 2x and SA by 4x. For future work, we plan to deploy
DENKYV in an HPC setting to further evaluate its performance
and recovery process.

ACKNOWLEDGEMENT

This work was supported in part by the Korea Institute of
Science and Technology Information (Grant No.J-22-NB-C03-
S01) and by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (No. NRF-
2021R1A2C2014386). This manuscript has been authored by
UT-Battelle, LLC under Contract No. DE-AC05-000R22725
with the U.S. Department of Energy. The publisher, by ac-
cepting the article for publication, acknowledges that the U.S.
Government retains a non-exclusive, paid up, irrevocable,
world-wide license to publish or reproduce the published
form of the manuscript, or allow others to do so, for United
States Government purposes. The Department of Energy will
provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan). Y. Kim
is the corresponding author.

(1]

[10]

[11]

REFERENCES

P. Schwan et al., “Lustre: Building a file system for 1000-node clusters,”
in Proceedings of the 2003 Linux symposium, vol. 2003, 2003, pp. 380-
386.

S. Oral, S. S. Vazhkudai, F. Wang, C. Zimmer, C. Brumgard, J. Hanley,
G. Markomanolis, R. Miller, D. Leverman, S. Atchley, and V. V. Larrea,
“End-to-end i/o portfolio for the summit supercomputing ecosystem,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC *19. New York,
NY, USA: Association for Computing Machinery, 2019.

A. Khan, H. Sim, S. S. Vazhkudai, A. R. Butt, and Y. Kim, “An
analysis of system balance and architectural trends based on top500
supercomputers,” in Proceedings of the International Conference on
High Performance Computing in Asia-Pacific Region, ser. HPC Asia
’21. New York, NY, USA: Association for Computing Machinery,
2021, p. 11-22.

A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and
F. Wang, “Hvac: Removing i/o bottleneck for large-scale deep learn-
ing applications,” in 2022 IEEE International Conference on Cluster
Computing (CLUSTER), 2022.

S. S. Vazhkudai, B. R. de Supinski, A. S. Bland, A. Geist, J. Sexton,
J. Kahle, C. J. Zimmer, S. Atchley, S. Oral, D. E. Maxwell, V. G. V.
Larrea, A. Bertsch, R. Goldstone, W. Joubert, C. Chambreau, D. Appel-
hans, R. Blackmore, B. Casses, G. Chochia, G. Davison, M. A. Ezell,
T. Gooding, E. Gonsiorowski, L. Grinberg, B. Hanson, B. Hartner,
I. Karlin, M. L. Leininger, D. Leverman, C. Marroquin, A. Moody,
M. Ohmacht, R. Pankajakshan, F. Pizzano, J. H. Rogers, B. Rosenburg,
D. Schmidt, M. Shankar, F. Wang, P. Watson, B. Walkup, L. D. Weems,
and J. Yin, “The design, deployment, and evaluation of the coral pre-
exascale systems,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’18, 2018, pp. 661-672.

J. Kaiser, R. Gad, T. Sii3, F. Padua, L. Nagel, and A. Brinkmann, “Dedu-
plication potential of hpc applications’ checkpoints,” in Proceedings of
the IEEE International Conference on Cluster Computing, ser. Cluster
’16, 2016, pp. 413-422.

D. Meister, J. Kaiser, A. Brinkmann, T. Cortes, M. Kuhn, and J. Kunkel,
“A study on data deduplication in hpc storage systems,” in Proceedings
of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, ser. SC *12, 2012.

“Nurion,” https://www.ksc.re.kr/eng/resource/nurion, 2018, accessed:
2021-08-16.

C. Cugnasco, Y. Becerra, J. Torres, and E. Ayguadé, “Exploiting key-
value data stores scalability for hpc,” in Proceedings of the 46th
International Conference on Parallel Processing Workshops (ICPPW),
ser. ICPPW ’17. IEEE, 2017, pp. 85-94.

A. Anwar, Y. Cheng, H. Huang, J. Han, H. Sim, D. Lee, F. Douglis, and
A. R. Butt, “Bespokv: Application tailored scale-out key-value stores,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC *18, 2018, pp.
14-29.

H. Greenberg, J. Bent, and G. Grider, “MDHIM: A parallel key/value
framework for hpc,” in Proceedings of the 7th USENIX Workshop on
Hot Topics in Storage and File Systems, ser. HotStorage "15, 2015.

25

[12]

[13]

[14]

[15]

[16]

[17
[18

[19]

[20]

[21]

[22]

[23]

24
[25

[26]

[27]

T. Wang, A. Moody, Y. Zhu, K. Mohror, K. Sato, T. Islam, and W. Yu,
“Metakv: A key-value store for metadata management of distributed
burst buffers,” in Proceedings of the IEEE International Parallel and
Distributed Processing Symposium, ser. IPDPS *17. 1EEE, 2017, pp.
1174-1183.

J. Kim, S. Lee, and J. S. Vetter, “Papyruskv: A high-performance parallel
key-value store for distributed nvm architectures,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC 17, 2017, pp. 1-14.

Z. W. Parchman, F. Aderholdt, and M. G. Venkata, “Sharp hash: A high-
performing distributed hash for extreme-scale systems,” in 2017 IEEE
International Conference on Cluster Computing (CLUSTER), 2017, pp.
647-648.

S. Eilemann, F. Delalondre, J. Bernard, J. Planas, F. Schuermann,
J. Biddiscombe, C. Bekas, A. Curioni, B. Metzler, P. Kaltstein et al.,
“Key/value-enabled flash memory for complex scientific workflows
with on-line analysis and visualization,” in Proceedings of the IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2016, pp. 608-617.

“LevelDB,” https://github.com/google/leveldb, 2010, accessed: 2021-10-
20.

“RocksDB,” http://rocksdb.org, 2012, accessed: 2021-10-20.

L. Lu, T. S. Pillai, H. Gopalakrishnan, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, “Wisckey: Separating keys from values in ssd-
conscious storage,” ACM Trans. Storage, vol. 13, no. 1, Mar. 2017.

F. Pan, Y. Yue, and J. Xiong, “Dcompaction: Delayed compaction for
the Ism-tree,” Int. J. Parallel Program., vol. 45, no. 6, p. 1310-1325,
Dec. 2017.

H. Kwon, Y. Cho, A. Khan, Y. Park, and Y. Kim, “DeNOVA: Dedupli-
cation extended nova file system,” in Proceedings of the 2022 IEEE In-
ternational Parallel and Distributed Processing Symposium, ser. IPDPS
’22, 2022, pp. 1360-1371.

A. Khan, P. Hamandawana, and Y. Kim, “A content fingerprint-based
cluster-wide inline deduplication for shared-nothing storage systems,”
IEEE Access, vol. 8, pp. 209 163-209 180, 2020.

A. Khan, C.-G. Lee, P. Hamandawana, S. Park, and Y. Kim, “A robust
fault-tolerant and scalable cluster-wide deduplication for shared-nothing
storage systems,” in Proceedings of the 2018 IEEE 26th International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2018, pp. 87-93.

P. Hamandawana, A. Khan, C.-G. Lee, S. Park, and Y. Kim, “Crocus:
Enabling computing resource orchestration for inline cluster-wide dedu-
plication on scalable storage systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, no. 8, pp. 1740-1753, 2020.
“BlobDB,” http://rocksdb.org, 2018, accessed: 2022-02-14.

Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast multicore
key-value storage,” in Proceedings of the 7th ACM European conference
on Computer Systems, ser. Eurosys *12, 2012, pp. 183-196.

X. Wu, Y. Xu, Z. Shao, and S. Jiang, “LSM-trie: An LSM-tree-based
Ultra-Large Key-Value store for small data items,” in Proceedings of the
2015 USENIX Annual Technical Conference (USENIX ATC 15). Santa
Clara, CA: USENIX Association, Jul. 2015, pp. 71-82.

J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, p. 107-113, Jan 2008.

