
DENKV: Addressing Design Trade-offs of
Key-value Stores for Scientific Applications

Safdar Jamil1, Awais Khan2, Kihyun Kim1, Jae-Kook Lee3, Dosik An3

Taeyoung Hong3, Sarp Oral2, Youngjae Kim1

1Dept. of Computer Science and Engineering, Sogang University, Seoul, Korea
2Oak Ridge National Laboratory, 3Korea Institute of Science and Technology Information

{safdar, realltd16, youkim}@sogang.ac.kr, {khana, oralhs}@ornl.gov, {jklee, dsan, tyhong}@kisti.re.kr

Abstract—High-performance computing (HPC) facilities have
employed flash-based storage tier near to compute nodes to
absorb high I/O demand by HPC applications during periodic
system-level checkpoints. To accelerate these checkpoints, proxy-
based distributed key-value stores (PD-KVS) gained particular
attention for their flexibility to support multiple backends and
different network configurations. PD-KVS rely internally on
monolithic KVS, such as LevelDB or RocksDB, to exploit the
KV interface and query support. However, PD-KVS are unaware
of the high redundancy factor in checkpoint data, which can be
up to GBs to TBs, and therefore, tend to generate high write
and space amplification on these storage layers. In this paper,
we propose DENKV which is deduplication-extended node-local
LSM-tree-based KVS. DENKV employs asynchronous partially
inline dedup (APID) and aims to maintain the performance
characteristics of LSM-tree-based KVS while reducing the write
and space amplification problems. We implemented DENKV
atop BlobDB and showed that our proposed solution maintains
performance while reducing write amplification up to 2× and
space amplification by 4× on average.

Index Terms—High Performance Computing, Key-Value
Stores, Log-Structures Merge Tree, Deduplication

I. INTRODUCTION

HPC applications are often compute and data intensive and

frequently run simulations for longer times. They perform

periodic checkpointing to store their internal states to high

I/O bandwidth parallel file systems (PFS) [1]. However, stor-

ing checkpoints on PFS presents significant difficulties when

scaling to meet the demands of large scientific applications due

to the considerable overhead induced. To absorb the high I/O

demand, it has become common to deploy additional storage

layers, often flash-based, to handle high-bandwidth workloads

such as checkpointing. These storage layers have a variety of

deployment models such as compute node-local (CN) storage

as in Summit [2]–[4] or near-node storage, often known as

Burst Buffers (BB) as in Sierra [3], [5].

Most HPC applications use system-level checkpointing li-

braries, which generate a huge amount of redundant check-

point data [6], [7]. To verify this claim, we investigated

the redundancy ratio of the 10 HPC applications at Nurion

supercomputer [8] and analyzed their sample data using an

in-house deduplication analysis tool and present the results

in Table I. Furthermore, several studies [9]–[12] tend to

accelerate checkpointing by adopting a distributed KV in-

terface atop CN-local and BBs. Notably, distributed KVS

Figure 1: Target HPC environment with compute-node local NVMe
SSDs and KVSs.

are categorized as either natively-distributed or proxy-based

KVS [10]. Proxy-based distributed KVS (PD-KVS) [9]–[15]

has received special attention for their flexibility to support

multiple backends and different network configurations.

PD-KVS relies internally on monolithic KVS1, such as

LevelDB [16] or RocksDB [17], to exploit the KV interface

and query support. These KVS are unaware of high redun-

dancy factor in checkpoints, ranging from GBs to TBs, and

therefore tend to generate high write amplification (WA) and

space amplification (SA) on these storage layers, where the

storage capacity is limited. Furthermore, log-structured merge

(LSM)-tree-based KVSs are unfit for node-local storage due

to high internal WA and SA, which degrades performance. A

way around this problem is to integrate redundancy reduction

techniques such as deduplication (dedup) in the HPC applica-

tion. However, it requires modifying the application and cannot

control the internal WA and SA of KVS. For instance, on

average internal WA of LSM-tree-based KVS ranges from 10×
- 30× on average, primarily affecting KVS throughput [18],

[19]. Integrating deduplication in the KVS backend offers

several benefits, such as reduced checkpoint data, minimal WA

and SA, and intelligent storage utilization [20]–[23].

Thus, we propose a deduplication-extended node-local

LSM-tree-based KV-Store (DENKV), to guarantee high per-

formance for HPC checkpointing applications. DENKV elim-

inates redundancy to smartly utilize the storage of space-

constrained node-local devices. We carefully identified the

level of LSM-tree to integrate the APID and aim to main-

1Hereafter, we will refer to monolithic KVS to simply KVS.

20

2022 IEEE/ACM International Parallel Data Systems Workshop (PDSW)

978-1-6654-7562-4/22/$31.00 ©2022 IEEE
DOI 10.1109/PDSW56643.2022.00009

Figure 2: Description of LSM-tree data structures.

tain the performance properties of LSM-tree-based KVS.

APID leverages transparent asynchronous dedup using the

FLUSH operation by the background thread pool. We extended

BlobDB [24] to implement the proposed ideas. BlobDB [17]

is based on vanilla RocksDB with key-value separation design.

Evaluation with the in-house simulation of checkpointing data

of HPC applications revealed that DENKV reduces the WA and

SA by upto 2× and 4× without jeopardizing the performance.

II. BACKGROUND AND MOTIVATION

A. Proxy-based Distributed KVS (PD-KVS) in HPC

Figure 1 depicts an HPC environment where each compute

node (CN) has a local NVMe SSD, and on top of it, a

PD-KVS can be adopted to fully exploit the performance

characteristics of these NVMe SSDs and provide significant

query performance. PD-KVS support multiple backends and

network configurations, making them a suitable candidate to

be adopted in HPC facilities. With different backend storage

engines in PD-KVS, applications can benefit according to

their requirements. For instance, applications that support

range queries will benefit by using a MassTree-based stor-

age engine [25] and applications dealing with write-intensive

applications can take advantage of LSM-tree-based storage

engines [16], [17], [26].

B. Log-Structured Merge (LSM)-Tree

Figure 2 illustrates the architecture and operational flow

of the representative LSM-tree-based KV store, RocksDB at

Facebook [17]. LSM-tree consists of memory and storage-

based components. Memory components include in-memory

skiplist-based MemTables, which are mutable, and appli-

cations can write/update KV pairs directly in MemTables.

When the MemTable reaches a certain size threshold, it is

converted into an Immutable Memtable (IMT) and eventually

written to level 0 by employing asynchronous threads from

the background thread pool, as shown in Figure 2. Storage

components are formed by Sorted String Tables (SSTs) files

and stored in terms of increasing size levels. The SSTs in level

0 are unsorted and can have overlapping key ranges; however,

SSTs in higher levels are sorted and do not have overlapping

key ranges. A compaction operation is triggered when a level

reaches a size threshold to maintain the sorted order of SSTs

and lookup performance of the LSM-tree. The compaction

operation merges and sorts the SSTs from particular level n to

level n+1 and is performed by the asynchronous threads from

the background thread pool. RocksDB employs Write-Ahead-

Log (WAL) for failure consistency of memory components.

LSM-tree-based KVSs suffer from high WA and SA. WA

occurs when KVS performs more write operations than the

application intended. It happens due to internal operations of

LSM-tree such as compaction. Meanwhile, SA occurs when

KVS occupies more space than the application requires. It

mainly happens when the workload is update-intensive, and

higher levels of the LSM-tree still store the stale data. As

LSM-tree stores data in terms of levels, lower levels always

have the latest/valid KV pairs, which makes the KV pairs

stored at the higher level invalid/stale and compaction oper-

ation is responsible for reclaiming those stale KV pairs. WA

shortens the lifespan of SSD due to the high number of writes,

and SA requires unnecessary SSD space, so they limit the

adoption of SSD as CN-SSD in the HPC environment.

C. Motivation

As shown in Figure 1, HPC applications store their interme-

diate state and checkpoint data in the compute-node local SSD

(CN-SSD) by exploiting PD-KVS. PD-KVS rely on mono-

lithic KVS to exploit performance characteristics of CN-SSD

and query support. PD-KVS can deploy multiple independent

instances of KVSs in the HPC environment to support the

distinct needs of the HPC applications. The HPC application

generates bursty write patterns when checkpointing the state,

and to absorb these write patterns, LSM-tree-based KVSs are

adopted due to being highly write optimized. However, LSM-

tree-based KVSs suffer from high WA and SA, which limits

their adoption due to the limited capacity of the CN-SSD. Thus

in this work, we aim to incorporate data dedup in CN-SSD-

based PD-KVSs only to store the unique checkpoint data.

This paper solves the aforementioned WA and SA by

running dedup in the storage engine of the LSM-tree-based

KVS. We focus on LSM-tree-based KVS as they are highly

write optimized and argue that they are a suitable candidate

to be adopted in PD-KVS to store intermediate and check-

point data on KVSs. However, the incorporation of dedup in

LSM-tree comes with its own challenges. First, identifying

a suitable component to adopt dedup plays a vital role in

the performance of the LSM-tree. If dedup is incorporated in

memory components, it impedes the performance of the LSM-

tree due to additional dedup overhead. Second, integrating

dedup at the higher levels of storage components, level 1

onward, will not be efficient in reducing WA and breaking the

structural constraint of the LSM-tree. LSM-tree only allows a

single valid instance of the KV pair at a particular level, and

storing multiple valid instances of KV pair based on the value

chunks will lead to the increased complexity of the compaction

operation and results in write stalls.

III. REDUNDANCY IN HPC APPLICATION

HPC applications often generate massively repeated data

(checkpoints) during execution and as an output. This dupli-

21

Table I: Deduplication analysis of 10 applications on Nurion Super-
computer hosted at KISTI facility. DR denotes duplication ratio.

App. Size DR App. Size DR
Abaqus 386 GB 41.8% CESM 273 GB 25.7%
Charmm 382 GB 23.1% Gaussian 293 GB 20.4%
Lammps 24 GB 42.5% MOM 323 GB 53.9%
MPAS 197 GB 81.7% Siesta 566 GB 52.1%
VASP 1 TB 27.3% ANSYS 544 GB 23.8%

cate data limits the usage of CN-SSD, which is constrained

by limited storage capacity. For example, a compute node

in Summit supercomputer has only 1.6 TB of storage ca-

pacity [3]. Whereas HPC applications, including physics and

scientific applications, generate several TBs of data during

the simulation lifetime. To investigate the duplicate ratio of

the HPC application, we analyzed the 10 HPC applications

consuming the most CPU cycles at the Nurion Supercomputer

hosted at the Korea Institute of Science and Technology

(KISTI) for one year and captured a sample of their generated

data. We analyzed the application data using an in-house

dedup analysis tool that we implemented based on FS-C [7].

Nurion has a total theoretical performance of 25.7 petaflops,

which was ranked 11th in the world in June 2018 [3]. Table I

shows the sample size collected within 10 minutes from each

application’s generated data. Meanwhile, HPC applications

execute in terms of days, which can lead to a vast amount

(TBs-PBs), while the CN-SSDs have limited capacity [3].

Table I also shows the ratio of duplicates in terms of

percentage for the data generated by the HPC applications.

This duplicate ratio typically ranges between 20% to 81%.

Furthermore, it has been studied that system-level checkpoint-

ing within HPC systems generates over 80% of duplicate

data [6]. Note that storing duplicate data limits not only the

capacity of the CN-SSD but also affects the performance of the

HPC application. For instance, when the capacity constraint is

reached in the CN-SSD, the system will flush the data to the

parallel file system (PFS), which is usually employed on top of

slow storage devices, typically over HDDs. On the other hand,

only storing the unique data at CN-SSD will help achieve

efficient utilization of these storage devices while reducing

the flush time over PFS.

IV. DENKV: DESIGN AND IMPLEMENTATION

A. System Overview

We proposed DENKV, a dedup-enabled LSM-tree-based

KVS, which employs asynchronous partially inline dedup

(APID). We carefully identified the level of LSM-tree to

integrate the APID without compromising the performance.

APID leverages the transparent asynchronous FLUSH opera-

tion by the background thread pool to perform dedup operation

when IMTs are written to the level 0 of the LSM-tree. APID

uses the fixed-size chunking mechanism for value partitioning

and employs SHA1 for fingerprinting. To manage the dedup

metadata, APID introduces a chunk information table (CIT),

which helps identify the duplicate value chunks. Furthermore,

DENKV adopted the KV-separation approach to maintaining

Figure 3: Design overview of DENKV and operational flow of PUT
and FLUSH operation in DENKV.

the structural constraint of the LSM-tree and introduced Meta-

SSTs and unique value log (UVL). In the KV-separation

technique, the keys and values are stored separately. The

reason for adoption of KV-separation design is manifolds:

First, the value chunks are stored separately based on the

chunk size; meanwhile, the corresponding key can store the

list of value chunk pointers in Meta-SSTs. Second, with the

KV-separation technique, SSTs are relatively smaller in size,

thus reducing the data movement during compaction operation

and resulting in less WA.

B. Data Structures

Figure 3 unboxes the internals of DENKV within a single

compute node of HPC system. DENKV consists of memory

and storage components. DENKV introduces chunk informa-

tion table (CIT), which manages the dedup metadata. CIT is a

hash table that stores the value chunks’ fingerprint (20 bytes),

offset (8 bytes), and reference count (4 bytes). A single entry

in CIT is comprised of 32 bytes and the total size of CIT

will depend on the workload size. CIT is updated during

the FLUSH and compaction operations by the background

thread pool. Additionally, DENKV introduces Meta-SSTs and

the UVL at storage layer. Meta-SSTs store the keys and list

of value chunk pointers that points at the corresponding value

chunk associated with the key. The format of Meta-SSTs

is similar to the traditional SSTs and comprised of filter,

metadata, and data blocks. The filter block is a bloom filter

which helps in GET queries, while the metadata blocks store

the additional metadata related to the SSTs such as number

of KV pairs, size of the SSTs, starting and ending range, and

so on. The data blocks stores the keys and list of value chunk

pointers as shown in Figure 3. The UVL is a log-based file

which stores the value chunks based on dedup chunk size and

comprised of value chunk and the reference count, represented

as H in Figure 3.

C. Put Operation

The operational flow of the PUT and FLUSH operations

of our proposed design is shown in Figure 3. When the HPC

application places a PUT request, it follows the path of the

22

PUT operation of the traditional LSM-tree and writes the

KV pair to MT, as shown by step 1 of Figure 3. When

MT reaches a certain size threshold, it is converted to IMT

(step 2). At step 3 , the background thread pool selects the

IMTs and passes them to the APID, step 4 . During FLUSH
operation, APID takes each KV pair from IMT and chunks

the value part of the KV pair, based on the chunk size, and

the fingerprint is computed. When the fingerprint is obtained,

the CIT is traversed to match the fingerprint. If a unique value

chunk is encountered, it is written to the UVL (step A), and

an entry is created in the corresponding Meta-SST at level 0

(step B). When the unique value chunk is written to UVL

and Meta-SST, the dedup metadata is updated at the CIT. If a

duplicate value chunk is detected, the offset stored at the CIT

is attached to the pointer list of the key and added to the Meta-

SST. DENKV supports large KV pairs for dedup by chunking

the values into fixed size chunks and storing unique chunks

at the UVL as shown in Figure 3. This mechanism obtains

the offset of each chunk maintained at the CIT and LSM-tree

with the corresponding key. The P∗ in Figure 3 represents an

offset pointer of the value chunk in Meta-STT.

D. Get Operation

The GET operation also follows the same path as the tra-

ditional LSM-tree-based KVS. When a GET request is placed

by the HPC application, it starts by looking for the requested

KV pair in the MT, and if found, it returns. Otherwise, the GET

operation will move to the IMTs. If the KV pair is not found

in the memory components, the GET request will traverse the

Meta-SSTs to another level. Each Meta-SST employs a bloom

filter to identify if it contains the requested KV pair or not. If

the bloom filter returns true, then the particular Meta-SST is

traversed, and the corresponding KV pair is reconstructed by

fetching the value chunks from the UVL in the same order the

value chunk pointers are stored on the list. If the bloom filter

returns false, the GET request moves to another Meta-SST and

reads its bloom filter. During the GET operation, there is no

interaction with CIT for reconstructing the KV pair. The GET

operations are based on keys, and APID does not store any

information regarding keys.

E. Garbage Collection

Although DENKV only writes the unique chunks at the

UVL, if a chunk is not being referred by any of the keys

in the LSM-tree, that chunk needs to be removed and the

space utilized by that chunk must be reclaimed. We introduce

garbage collection in DENKV to reclaim the obsolete chunk.

We integrated garbage collection with compaction operation

as proposed in BlobDB [24]. During compaction operation,

BlobDB reclaims obsolete values from the blob files if an

update operation has been encountered for the corresponding

key of the value. However, in DENKV, a single chunk in UVL

can be pointed by several keys in the LSM-tree. Therefore,

during compaction, we only update the reference count of the

chunk maintained within the UVL (H in UVL of Figure 3).

At the end of compaction, an asynchronous garbage collection

thread traverses the UVL, reclaims the chunks with zero

reference count, and updates CIT by deleting the entries of

reclaimed chunks.

F. Performing Analysis on Node-local KV

Key-value and NoSQL columnar data stores are better

suited for several graphs and simulation-based analytical work-

loads and applications. Performing search-rich querying on

such KV stores is easier and much faster than traditional

file system approaches. The CN-SSDs offer opportunities to

analyze and gain insight into intermediate data to optimize

the HPC applications. For instance, various HPC applications

perform computation and analysis in the Map-Reduce <key,
value> style [27] to obtain insights into the data generated

during simulations. Therefore, by adopting the KV interface,

HPC applications gain immediate access to perform queries

on the intermediate data and get the specific insights required.

V. EVALUATION

A. Experimental Setup

We performed all the experiments on a Linux machine with

4 Intel Xeon(R) E5-4640 v2 CPUs @ 2.20 GHz with 10

physical cores per CPU node, 80 MiB last level cache, and

256 GiB DDR3 DRAM. The operating system is 64-bit Linux

5.15.0.33, with an EXT4 file system. The machine is equipped

with 1 TB Samsung 970 EVO SSD.

1) Implementation: DENKV is implemented on top of

BlobDB [24] 7.3.0 which implements the key-value separation

in RocksDB [17]. BlobDB is optimized for write and read

operations and shows better performance than the traditional

RocksDB. Similar to BlobDB, DENKV maintains foreground

and background threads where foreground threads perform

operation on mutable data which can be directly manipulated

by the HPC applications. In DENKV, the background thread

pool is divided into FLUSH threads and compaction threads.

FLUSH threads perform KV separation, dedup operation and

then write the keys and value pointers to the Meta-SSTs of

LSM-tree, while only unique value chunks are written to the

UVL. We compare the three implementations below.

• RocksDB: Traditional LSM-tree-based KVS where storage

components are composed of SSTs which store KV pairs

together. Additionally, we utilize traditional RocksDB to

compare the performance difference between baseline LSM-

tree structure and KV separated design.

• BlobDB: KV separated design of RocksDB where keys and

value pointers are stored at the SSTs, while the values are

stored at the value-log, named Blobs. BlobDB maintains

the basic design of the LSM-tree means, it has memory and

storage components where FLUSH operation is responsible

for separating keys and values.

• DENKV: Our proposed design which introduces APID.

Similar to BlobDB, DENKV also employed KV separation

technique while instead of storing the complete values of the

corresponding KV pair, our solution only stores the unique

value chunks at the UVL.

23

0% 30% 60% 90%
0

20

40

60

Dedup Percentage at workload
(a) 4KB KV Pairs

T
h
ro

u
g
h
p
u
t
(

K
IO

P
S

)
RocksDB BlobDB

0% 30% 60% 90%
0.0

0.1

0.2

0.3

Dedup Percentage at workload
(b) 1MB KV Pairs

DENKV

Figure 4: Performance analysis of DENKV with varying KV pair
sizes and dedup ratio.

2) Benchmarks and Workload: We built an in-house bench-

mark which simulates the dedup patterns of HPC applications

as shown in Table I. Specifically, with our benchmark we

can adjust the dedup ratio, the number of KV pairs and

value size. The benchmark uses single application thread to

perform requests. For workloads, we generated two categories

of KV pairs: small (4 KB KV pairs) and large (1 MB KV pairs)

where the key size is fixed to 16 bytes while the value size

varies. For small workload, we used 1 Million KV pairs

while for the large workload, we only used 100 thousand

KV pairs for the evaluation. The dedup ratio evaluated in these

experiments include 0%, 30%, 60%, and 90%. We selected

these dedup ratio considering the dedup ratios presented by

the HPC applications in Table I.

B. Results

We present the performance analysis of proposed DENKV

in comparison to baseline RocksDB and BlobDB. We also

show the WA and SA evaluation of the compared KVSs.

1) Performance analysis: Figure 4 shows the evaluation

results in terms of throughput of 4KB and 1MB sized KV pairs

with varying dedup ratios. It can be observed that DENKV has

the worst performance in comparison to baseline RocksDB

and BlobDB for small KV pairs with a 0% dedup ratio as

shown in Figure 4(a). It is due to extra dedup operation. With

additional dedup operations, the background flush threads have

larger critical sections and take longer time than baseline

RocksDB and BlobDB. The dedup operations (fingerprinting

and dedup metadata update) are the major cause of additional

execution time for background FLUSH threads. However,

these overheads can be overcome by adopting parallelized

fingerprinting methods and an optimized concurrent-friendly

dedup metadata table (CIT).

Furthermore, it can be seen that with an increasing dedup

ratio, DENKV improves the performance and outperforms

baseline RocksDB when the dedup ratio is 90% with small

KV pairs. This is due to less number of I/O operations

being performed by DENKV and only CIT and Meta-SSTs

are updated, which reduces the overall I/O size and thus

improves the performance. Additionally, DENKV outperforms

RocksDB regardless of the dedup ratio with large KV pairs.

This is because DENKV is implemented atop BlobDB, and

due to its KV separation design both DENKV and BlobDB

are optimized for large KV pairs. Notably, DENKV also

0% 30% 60% 90%
0

4

8

12

0.0

1.5

3.0

4.5

Dedup Percentage at workload
(a) 4KB KV Pairs

W
ri

te
A

m
p

lif
ic

a
ti
o

n
(G

B
) WA_R WA_B WA_D

0% 30% 60% 90%
0

400

800

1200

0

40

80

120

Dedup Percentage at workload
(b) 1MB KV Pairs

S
p

a
c
e

A
m

p
lific

a
tio

n
(G

B
)

SA_R SA_B SA_D

Figure 5: WA and SA analysis with varying KV pair sizes and dedup
ratio. WA R and SA R presents WA and SA of traditional RocksDB,
WA B and SA B presents BlobDB, and WA D and SA D presents
DENKV.

outperforms BlobDB when the dedup ratio is 90% as explained

above as shown in Figure 4(b).

2) WA and SA analysis: Figure 5 shows the WA and SA

analysis. The right side Y-axis of Figure 5 shows the WA,

while the left side presents the SA results. We measured

the WA during the execution of each workload using the

Linux system-stat command. It can be observed that traditional

RocksDB suffers from huge WA in all workload meanwhile

DENKV and BlobDB has significantly less WA due to KV

separation design. DENKV and BlobDB both do not include

the value parts for the compaction operation, which helps

mitigate the WA. Note that DENKV has even less WA than

BlobDB with an increasing dedup ratio in both workloads.

With a high dedup ratio, a smaller number of writes are

performed to the UVL of the DENKV, thus less WA.

We measured the SA as the total storage space occupied by

all the KVSs after the execution of the workloads. Note that

DENKV has the least storage requirement with an increasing

dedup ratio while RocksDB and BlobDB have constant storage

utilization regardless of the dedup ratio. With increasing dedup

ratio, DENKV only stores the unique value chunks in the UVL

while storing all the keys and associated value chunk pointers

in the Meta-SSTs. Since the keys and value chunk pointers are

small, only a few Meta-SSTs are created and thus less storage

utilization.

VI. CONCLUSION

In this work, we showed that HPC applications generate

highly redundant data by a thorough dedup analysis of the 10

HPC applications at the Nurion supercomputer at KISTI. We

argue that adopting storage optimization techniques at PD-

KVS based KVSs would help reduce the storage utilization

and improve the performance of HPC applications. Thus,

we proposed DENKV, deduplication extended node-local key-

value store to guarantee high-performance for HPC check-

pointing applications. DENKV introduces asynchronous partly

inline deduplication (APID) at FLUSH operation. We designed

and implemented DENKV atop BlobDB and showed that our

proposed solution maintains performance while reducing WA

up to 2× and SA by 4×. For future work, we plan to deploy

DENKV in an HPC setting to further evaluate its performance

and recovery process.

24

ACKNOWLEDGEMENT

This work was supported in part by the Korea Institute of

Science and Technology Information (Grant No.J-22-NB-C03-

S01) and by the National Research Foundation of Korea (NRF)

grant funded by the Korea government (MSIT) (No. NRF-

2021R1A2C2014386). This manuscript has been authored by

UT-Battelle, LLC under Contract No. DE-AC05-00OR22725

with the U.S. Department of Energy. The publisher, by ac-

cepting the article for publication, acknowledges that the U.S.

Government retains a non-exclusive, paid up, irrevocable,

world-wide license to publish or reproduce the published

form of the manuscript, or allow others to do so, for United

States Government purposes. The Department of Energy will

provide public access to these results of federally sponsored

research in accordance with the DOE Public Access Plan

(http://energy.gov/downloads/doe-public-access-plan). Y. Kim

is the corresponding author.

REFERENCES

[1] P. Schwan et al., “Lustre: Building a file system for 1000-node clusters,”
in Proceedings of the 2003 Linux symposium, vol. 2003, 2003, pp. 380–
386.

[2] S. Oral, S. S. Vazhkudai, F. Wang, C. Zimmer, C. Brumgard, J. Hanley,
G. Markomanolis, R. Miller, D. Leverman, S. Atchley, and V. V. Larrea,
“End-to-end i/o portfolio for the summit supercomputing ecosystem,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19. New York,
NY, USA: Association for Computing Machinery, 2019.

[3] A. Khan, H. Sim, S. S. Vazhkudai, A. R. Butt, and Y. Kim, “An
analysis of system balance and architectural trends based on top500
supercomputers,” in Proceedings of the International Conference on
High Performance Computing in Asia-Pacific Region, ser. HPC Asia
’21. New York, NY, USA: Association for Computing Machinery,
2021, p. 11–22.

[4] A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley, and
F. Wang, “Hvac: Removing i/o bottleneck for large-scale deep learn-
ing applications,” in 2022 IEEE International Conference on Cluster
Computing (CLUSTER), 2022.

[5] S. S. Vazhkudai, B. R. de Supinski, A. S. Bland, A. Geist, J. Sexton,
J. Kahle, C. J. Zimmer, S. Atchley, S. Oral, D. E. Maxwell, V. G. V.
Larrea, A. Bertsch, R. Goldstone, W. Joubert, C. Chambreau, D. Appel-
hans, R. Blackmore, B. Casses, G. Chochia, G. Davison, M. A. Ezell,
T. Gooding, E. Gonsiorowski, L. Grinberg, B. Hanson, B. Hartner,
I. Karlin, M. L. Leininger, D. Leverman, C. Marroquin, A. Moody,
M. Ohmacht, R. Pankajakshan, F. Pizzano, J. H. Rogers, B. Rosenburg,
D. Schmidt, M. Shankar, F. Wang, P. Watson, B. Walkup, L. D. Weems,
and J. Yin, “The design, deployment, and evaluation of the coral pre-
exascale systems,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’18, 2018, pp. 661–672.

[6] J. Kaiser, R. Gad, T. Süß, F. Padua, L. Nagel, and A. Brinkmann, “Dedu-
plication potential of hpc applications’ checkpoints,” in Proceedings of
the IEEE International Conference on Cluster Computing, ser. Cluster
’16, 2016, pp. 413–422.

[7] D. Meister, J. Kaiser, A. Brinkmann, T. Cortes, M. Kuhn, and J. Kunkel,
“A study on data deduplication in hpc storage systems,” in Proceedings
of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, ser. SC ’12, 2012.

[8] “Nurion,” https://www.ksc.re.kr/eng/resource/nurion, 2018, accessed:
2021-08-16.

[9] C. Cugnasco, Y. Becerra, J. Torres, and E. Ayguadé, “Exploiting key-
value data stores scalability for hpc,” in Proceedings of the 46th
International Conference on Parallel Processing Workshops (ICPPW),
ser. ICPPW ’17. IEEE, 2017, pp. 85–94.

[10] A. Anwar, Y. Cheng, H. Huang, J. Han, H. Sim, D. Lee, F. Douglis, and
A. R. Butt, “Bespokv: Application tailored scale-out key-value stores,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’18, 2018, pp.
14–29.

[11] H. Greenberg, J. Bent, and G. Grider, “MDHIM: A parallel key/value
framework for hpc,” in Proceedings of the 7th USENIX Workshop on
Hot Topics in Storage and File Systems, ser. HotStorage ’15, 2015.

[12] T. Wang, A. Moody, Y. Zhu, K. Mohror, K. Sato, T. Islam, and W. Yu,
“Metakv: A key-value store for metadata management of distributed
burst buffers,” in Proceedings of the IEEE International Parallel and
Distributed Processing Symposium, ser. IPDPS ’17. IEEE, 2017, pp.
1174–1183.

[13] J. Kim, S. Lee, and J. S. Vetter, “Papyruskv: A high-performance parallel
key-value store for distributed nvm architectures,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’17, 2017, pp. 1–14.

[14] Z. W. Parchman, F. Aderholdt, and M. G. Venkata, “Sharp hash: A high-
performing distributed hash for extreme-scale systems,” in 2017 IEEE
International Conference on Cluster Computing (CLUSTER), 2017, pp.
647–648.

[15] S. Eilemann, F. Delalondre, J. Bernard, J. Planas, F. Schuermann,
J. Biddiscombe, C. Bekas, A. Curioni, B. Metzler, P. Kaltstein et al.,
“Key/value-enabled flash memory for complex scientific workflows
with on-line analysis and visualization,” in Proceedings of the IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2016, pp. 608–617.

[16] “LevelDB,” https://github.com/google/leveldb, 2010, accessed: 2021-10-
20.

[17] “RocksDB,” http://rocksdb.org, 2012, accessed: 2021-10-20.
[18] L. Lu, T. S. Pillai, H. Gopalakrishnan, A. C. Arpaci-Dusseau, and

R. H. Arpaci-Dusseau, “Wisckey: Separating keys from values in ssd-
conscious storage,” ACM Trans. Storage, vol. 13, no. 1, Mar. 2017.

[19] F. Pan, Y. Yue, and J. Xiong, “Dcompaction: Delayed compaction for
the lsm-tree,” Int. J. Parallel Program., vol. 45, no. 6, p. 1310–1325,
Dec. 2017.

[20] H. Kwon, Y. Cho, A. Khan, Y. Park, and Y. Kim, “DeNOVA: Dedupli-
cation extended nova file system,” in Proceedings of the 2022 IEEE In-
ternational Parallel and Distributed Processing Symposium, ser. IPDPS
’22, 2022, pp. 1360–1371.

[21] A. Khan, P. Hamandawana, and Y. Kim, “A content fingerprint-based
cluster-wide inline deduplication for shared-nothing storage systems,”
IEEE Access, vol. 8, pp. 209 163–209 180, 2020.

[22] A. Khan, C.-G. Lee, P. Hamandawana, S. Park, and Y. Kim, “A robust
fault-tolerant and scalable cluster-wide deduplication for shared-nothing
storage systems,” in Proceedings of the 2018 IEEE 26th International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2018, pp. 87–93.

[23] P. Hamandawana, A. Khan, C.-G. Lee, S. Park, and Y. Kim, “Crocus:
Enabling computing resource orchestration for inline cluster-wide dedu-
plication on scalable storage systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, no. 8, pp. 1740–1753, 2020.

[24] “BlobDB,” http://rocksdb.org, 2018, accessed: 2022-02-14.
[25] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast multicore

key-value storage,” in Proceedings of the 7th ACM European conference
on Computer Systems, ser. Eurosys ’12, 2012, pp. 183–196.

[26] X. Wu, Y. Xu, Z. Shao, and S. Jiang, “LSM-trie: An LSM-tree-based
Ultra-Large Key-Value store for small data items,” in Proceedings of the
2015 USENIX Annual Technical Conference (USENIX ATC 15). Santa
Clara, CA: USENIX Association, Jul. 2015, pp. 71–82.

[27] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, p. 107–113, Jan 2008.

25

