
Accelerating Flash-X Simulations with
Asynchronous I/O

Rajeev Jain∗, Houjun Tang†, Akash Dhruv∗, J. Austin Harris‡, Suren Byna†
∗ Argonne National Laboratory, † Lawrence Berkeley National Laboratory, ‡ Oak Ridge National Laboratory

Abstract—Most high-fidelity physics simulation codes, such as
Flash-X, need to save intermediate results (checkpoint files) to
restart or gain insights into the evolution of the simulation. These
simulation codes save such intermediate files synchronously,
where computation is stalled while the data is written to storage.
Depending on the problem size and computational requirements,
this file write time can be a substantial portion of the total
simulation time. In order to hide the I/O latency of checkpointing,
asynchronous I/O methods have been introduced. These methods
use background threads for performing I/O while the main
threads continue with the simulation. The usage of background
threads can compete for resources on the node as well as with
communication. In this paper, we evaluate the overheads and
the overall benefit of asynchronous I/O in HDF5 to simulations.
Results from real-world high-fidelity simulations on the Summit
supercomputer show that I/O operation is overlapped with
application communication or computation or both, effectively
hiding some or all of the I/O latency. Our evaluation shows that
while using asynchronous I/O adds overhead to the application,
the I/O time reduction is more significant, resulting in overall up
to 1.5X performance speedup.

I. INTRODUCTION

Most high-performance computing (HPC) multiphysics sim-

ulations use parallel optimized I/O routines to write interme-

diate simulation data. This data can be categorized into two

broad types: plot data and checkpoint data. Plot data is used

for visualization and keeping track of simulation variables

as the simulation evolves. It generally uses lower precision

and tracks only the variables of interest, to preserve space

and compute time. Plot data is written more frequently than

checkpoint data. Checkpoint data is used to restart a simulation

in the event of a failure or to extend long-running simulations.

Typically, checkpoint files store data for the grid and all the

variables required to restart the simulation at a given point

in the simulation. Compared with plot files, checkpoint files

are much larger because the data is stored in full precision.

Checkpoint files also consume a much bigger chunk of total

I/O time but are saved less often than plot files; frequent

checkpointing can lead to significant overhead on system

resources. Researchers [1] studied the needs of astrophysics

simulations and identified the requirements of system-level un-

derstanding of data and computation. Other physics simulation

areas such as earthquake simulations [2] have implemented

similar asynchronous I/O and tailored solutions specific to a

hardware architecture.

Writing data to a parallel file system is expensive because

of several factors such as network contention, contention of

shared file system resources, and contention from I/O opera-

tions from other running simulations that share the file system.

Physics-based HPC applications require careful attention in

setting up the frequency of plot, checkpointing, and other I/O

operations. Also important are fine-tuning the key parameters

and optimizing the actual implementation of the I/O routines

to accelerate the overall simulation and optimally utilize the

resources provided by the HPC hardware.

HDF5, ADIOS, VeloC, and PnetCDF are popular high-level

external libraries that are used by most physics simulation

codes for I/O operations. These operations are often performed

synchronously, without compression, and use default system

configurations. Understanding the HPC architecture and re-

sources is important but often difficult because it requires man-

ual tuning to get optimal performance from the machine. The

recent move toward many-core nodes with graphics processing

units (GPUs) has paved the way to hybrid programming

models and has raised new challenges for physics simulation

developers. Many physics simulation codes are unable to

exploit the hardware resources and spend too much time with

suboptimal use of I/O routines.

Flash-X uses the HDF5 I/O library for the majority of its

simulation needs. In this work we describe the implementation

of our recently developed asynchronous I/O capability. Our

results show how the I/O performance of the simulations is

affected by use of key parameters such as the number of

MPI I/O hints, hardware threads, problem distribution, and

GPU-based settings. The findings presented here also pave the

way for automating the allocation of resources for compute

and I/O tasks. We show that asynchronous HDF5-based I/O

acceleration of simulation codes enables a considerable reduc-

tion in total execution time of a variety of community-based

physics simulation codes. Results show a small overhead and

substantial savings in the total simulation time for a typical

simulation with our asynchronous I/O implementation. We

also describe the implementation of a novel mechanism to

show a significant reduction in the total runtime of the simu-

lation. This mechanism decouples compute and I/O operations

of the simulations and provides the ability to continue the

simulation to the next time step without waiting for the I/O

operation to complete.

In Section II, we present a brief background to the simu-

lation codes and tools used in this study, and show the code

changes required for using asynchronous I/O. In Section III,

we present the experimental setup of various simulation codes.

We evaluate the performance overhead and improvements in

Section IV and conclude in Section V.

13

2022 IEEE/ACM International Parallel Data Systems Workshop (PDSW)

978-1-6654-7562-4/22/$31.00 ©2022 IEEE
DOI 10.1109/PDSW56643.2022.00008

II. BACKGROUND

A. Flash-X

Flash-X [3] is a highly composable multiphysics software

system that can be used to simulate physical phenomena in

several scientific domains. It is derived from FLASH, which

has been a community code for several communities over the

past 20 years. The Flash-X architecture has been redesigned

to be compatible with increasingly heterogeneous hardware

platforms. Part of the redesign utilizes a newly designed

performance portability layer that is language agnostic. Flash-

X can write checkpoint and plot files in HDF5 format, and we

have recently enabled Flash-X to perform asynchronous I/O

with the HDF5 asynchronous VOL connector.

B. HDF5 and Asynchronous VOL Connector

HDF5 is a popular I/O library and self-describing file

format that provides an abstraction layer to manage data and

the metadata within a single file [4]. HDF5 has recently

provided a feature, called the Virtual Object Layer (VOL) [5],

that enables HDF5 to support dynamic control to the library

at runtime. VOL allows intercepting the high-level HDF5

public application programming interface and implementing

various optimizations for different types of storage media,

thus enabling better data management transparently to the

application. The asynchronous I/O VOL connector [6], [7]

provides asynchronous I/O support for HDF5 operations. It

uses background threads to perform I/O operations, which are

managed by the Argobots threading framework [8], which uses

lightweight threads running on CPUs.

C. UnifyFS

UnifyFS [9] is a user-level file system under active develop-

ment that supports shared file I/O over distributed storage on

HPC systems, for example, node-local SSDs. With UnifyFS,

applications can write to fast, scalable, node-local burst buffers

as easily as they do to the parallel file system. We have

evaluated Flash-X’s I/O performance on UnifyFS using node-

local SSDs in addition to the disk-based GPFS.

D. Compressible Flow Explosion Simulation – Sod

We use a 3D Sod problem (a compressible flow explo-

sion problem widely used for verification of shock-capturing

simulation codes) with tracer particles. It checks Flash-X’s

ability to deal with strong shocks and non-planar symmetry.

The problem involves the self-similar evolution of a cylindrical

or spherical blast wave from a delta-function initial pressure

perturbation in an otherwise homogeneous medium. Figure

1 shows a zoomed-in view of contours of energy, E, as

the simulation progresses from time t1 to t3. The adaptive

grid follows the shock as it propagates through the domain.

This problem tests the performance of AMReX refinement

procedure when using asynchronous I/O.

Fig. 1: Contours of energy (E) for time t3 > t2 > t1, and an example of
block structured AMR grids.

Fig. 2: Schematic of the deforming bubble problem: The bubbles are defined
by using a signed distance function, φ, that undergoes deformation under a
prescribed velocity field.

E. Deforming Bubble Simulation

The deforming bubble problem is a benchmark problem for

multiphase computational fluid dynamics (CFD) applications

using Flash-X. The deformation of bubbles is computed by

using a level-set advection and redistancing algorithm, which

is used in multiphase CFD simulations to resolve the evolution

of the liquid-gas interface. [10]. A schematic of this problem

is provided in Fig. 2, which shows isocontours of the signed

distance function, φ, used to represent bubbles that undergo

deformation under a prescribed velocity field. In this problem

grid changes occur frequently and provide an opportunity to

test I/O performance with different adaptive mesh refinement

(AMR) implementations in Flash-X.

F. Streaming Sine Wave Test Problem (GPU)

We include neutrino transport in Flash-X by interfacing

to thornado[11]. thornado is independently developed

and maintained as a toolkit for solving neutrino radiation

hydrodynamics in astrophysical simulations. For Flash-X, we

exercise the capability of thornado to evolve the neutrino

radiation field with spectral neutrino transport using a two-

moment model.

Moments of the neutrino phase-space distribution func-

tion representing spectral energy and momentum densities

are evolved. Higher-order moments (e.g., components of the

radiation pressure tensor) are approximated by using algebraic

expressions involving the lower-order evolved moments to

form a closed system of equations. We configured thornado
to use OpenACC to offload the computation to GPUs.

The streaming sine wave test problem is an important

benchmark for verifying the correctness and performance of

14

Fig. 3: Timeline of synchronous I/O and asynchronous I/O. Three time steps
t1, t2, and t3 are shown. Overlap of I/O time and compute time is shown in
the Async I/O case for time steps t2 and t3.

the streaming advection operator in thornado as well as the

Flash-X interface to thornado. It also has a relatively high

number of degrees-of-freedom per cell providing different I/O

performance characteristics than the other tests. The problem

also tests the correctness of asynchronous I/O for a problem

evolved using GPUs.

III. METHOD

The asynchronous I/O VOL connector [7] enables asyn-

chronous I/O for HDF5 operations using background threads.

This implementation can be compiled as a dynamically linked

library and can be linked to a user’s application directly,

remaining separate from the installed version of HDF5 and

making it easy to adopt. The background threads are managed

by Argobots, a lightweight low-level threading framework [8].

The VOL connector maintains a queue of asynchronous tasks

and tracks their dependencies as a directed acyclic graph,

where a task can be executed only when all its parent tasks

have been completed successfully.

Figure 3 shows two simulations, Sync I/O and Async I/O,

starting at the same time t=0. At time t=t1, the simulation
starts to write the first checkpoint file. The Async I/O sim-

ulation starts the next time step after a very small overhead

that signals the simulation that I/O operation is complete. In

the background, Async I/O uses the operating system of the

compute nodes hardware and requests threads for writing the

file in the background. The figure shows two more time steps,

t=t2 and t=t3. We note that usually at the time of writing

the final checkpoint file no more computation is required,

and I/O is the only operation. At this point the Async I/O

signals the threads to complete all pending I/O operations

before stopping the simulation. In the current implementation,

a copy of the data is stored in memory for asynchronous I/O

operations, which could result in a peak memory requirement

double the size of the synchronous application run. Async

VOL has an internal memory-probing mechanism that can

detect when not enough system memory is available for

copying the write buffer, and it will start writing the data

synchronously without a copy until more memory becomes

available (as a result of freeing existing copied buffers after

finishing their writes).

HPC systems typically include a parallel file system (PFS)

such as GPFS and Lustre to provide high-performance I/O

i f d e f FLASH IO ASYNC HDF5
s t a t u s = H5Dwri te async (d a t a s e t , . . . , buf , e s i d) ;

e l s e
s t a t u s = H5Dwrite (d a t a s e t , . . . , bu f) ;

e n d i f
i f (s t a t u s < 0)

p r i n t f (” E r r o r w r i t i n g %s\n” , dname) ;

Fig. 4: Example change in Flash-X to support both synchronous and asyn-
chronous I/O with HDF5.

operations for massive parallel applications. Some systems

may also have an additional burst buffer layer that utilizes

SSDs to provide even higher I/O throughput. The SSDs in

the burst buffer reside on each compute node and offer an

order of magnitude better I/O performance than does the hard-

disk-based parallel file system. Disk-based parallel file systems

are usually suited for medium-sized streaming input/outputs,

whereas node-local storage is suited for bursts of data accesses

with exceptionally large I/O streaming requirements. For ex-

ample, the Summit supercomputer uses GPFS as the global file

system. A few I/O libraries such as UnifyFS [9] and Spectral

[12] allow accessing data distributed in different node-local

storage devices with a single namespace and can automatically

transfer the data to and from GPFS. We note that node-local

storage is deleted at the end of the simulation, and hence the

data needs to be copied out to GPFS for evaluation.

Figure 4 shows the conditionals for an appropriate HDF5

write to call. It calls asynchronous HDF5 when the code is

set up with the asynchronous option. The extra parameter

“es id” (event set id) is used for the asynchronous version.

It is obtained from a call to the H5EScreate() function,

and it manages the asynchronous operation. The function

H5EWait() is called after the write operation; it waits until

the write is complete in the event set buffer and is ready

for a new buffer as new set of output is ready to be stored

in the buffer for overlapping the writing and computation/-

communication. The final checkpoint file cannot be written

asynchronously because it is the last step in the process and

no more calculations are left to overlap.

Using the async I/O VOL requires having

MPI_THREAD_MULTIPLE support when initializing MPI,

because the background thread may execute I/O operations

that involve MPI collective operations at the same time as

the application’s MPI communications. Enabling it increases

the MPI overhead (on average ≈ 4%), as shown in Section

IV. Additionally, since the background thread would perform

I/O operations at the same time that the application is doing

computation or communication, they may compete for the

CPU resources. If the CPU cores become oversubscribed,

the application’s progress can be a significantly slowed

down. Thus, in order to avoid resource contention, it is

recommended to leave one core or one hyperthread for the

asynchronous background thread. This can often be achieved

with GPU-accelerated applications, where the computation

and communication could all happen on the GPUs, leaving the

CPU resources idle, and can fully benefit from asynchronous

I/O with a small overhead.

15

IV. PERFORMANCE EVALUATION

A. Experiment Setup

We ran three Flash-X simulations at various scales on the

Summit supercomputer at the Oak Ridge Leadership Comput-

ing Facility. Each Summit node comprises 2 IBM POWER9

CPUs and 6 NVIDIA Volta 100 GPUs and has 608 GB of

fast memory (96 GB HBM2 + 512 GB DDR4) along with

1.6 TB of non-volatile memory (node-local SSD). The nodes

are connected with the dual-rail Mellanox EDR InfiniBand

network and have access to a 250 PB IBM file system.

We have evaluated three Flash-X cases: Sod, deforming

bubble problem, and streaming sine wave (SSW) problems.

The former two use only the CPU, while the SSW case uses

both the CPU and GPU. All three problems use less than half

of available memory on Summit nodes, with sufficient space

for keeping the duplicated buffer used by asynchronous write.

Each MPI rank used 1 Argobots thread for executing the I/O

operations asynchronously.

Inter-node communication in Flash-X is usually latency-

bound and does not interfere significantly with overlapping

I/O. For problems with sufficiently large degrees of freedom to

make inter-node communication bandwidth bound and cause

contention for network resources (e.g., Section II-F) there

is a concomitant increase in node-local computational load

where I/O can be performed without the presence of inter-node

communication. For problems large enough to break weak-

scaling (�10000 MPI ranks), this issue of resource contention

will need to be revisited, but is beyond the proof-of-concept

scope we present here.

B. Sod

The Sod problem in Flash-X is often used to test

and benchmark the performance of various physics sim-

ulation modules. The setup of Sod problem in the ex-

periments performed here uses the AMReX library for

mesh representation. Figure 5 shows the weak- and strong-

scaling results running the Sod case using 16 to 128

nodes with various configurations: (1) synchronous I/O with

MPI_THREAD_SINGLE to GPFS, (2) synchronous I/O with

MPI_THREAD_MULTIPLE to GPFS, (3) asynchronous I/O

with MPI_THREAD_MULTIPLE to GPFS, (4) synchronous

I/O with MPI_THREAD_SINGLE to UnifyFS, and (5) asyn-

chronous I/O with MPI_THREAD_SINGLE to UnifyFS. At

the time of running the experiments, UnifyFS had a bug that

prevented moving the data from node-local SSDs to the global

GPFS file system; thus the total times recorded for cases (4)

and (5) are not directly comparable with those for cases (1)

to (3), since they are writing to different storage devices.

For the weak-scaling cases, comparing configurations (1)

and (2) shows an insignificant time increase when using

MPI_THREAD_MULTIPLE (less than 5%). Comparing (1)

and (3) demonstrates the effectiveness of the asynchronous

I/O: the total application runtime is reduced by up to 35%,

and the I/O time observed by the application is reduced by up

to 85%. Configurations (4) and (5) write data to UnifyFS,

which stores the data to the node-local SSDs. As a result

of the faster I/O, the total execution time is further reduced.

However, because of the need to reserve at least one core for

UnifyFS, the total number of MPI ranks used by the Flash-X

application is reduced from 42 to 40 (1 core is mapped to 2

MPI ranks with Intel’s simultaneous multithreading support),

thus increasing the total compute time. Using asynchronous

I/O on top of UnifyFS can further speed up the application’s

runtime but not as significantly as when data is written to

the slower GPFS. We also observe that the computation time

of synchronous I/O is larger than the asynchronous I/O with

UnifyFS in 8 and 16 nodes cases. We believe it is caused by the

UnifyFS’s RDMA data transfers from the FLASH-X processes

vs. the background threads to the UnifyFS server processes.

With relatively few UnifyFS processes (1 process per node)

to write ≈ 1 TB data in total, it causes more interference to

the application processes than the MPI TM overhead.

We observe a similar trend with the strong-scaling cases.

However, we found that the smaller number of MPI ranks/-

cores used by the Flash-X application has more significant

impact, since it takes longer time in the 8- and 16-node cases.

With 8 to 128 nodes, the background threads’ I/O time overlap

with 4%, 12%, 31%, 59%, and 90% of the computation

and communication time. As mentioned previously, Flash-

X performs MPI communications in every time step, which

overlap with the I/O operations. Such overlap results in a small

overhead, and is insignificant compared with the total I/O time

reduction from enabling asynchronous I/O in all our test cases.

C. Deforming Bubble

For each run in the strong-scaling study the number of

bubbles per MPI process is varied. Results for strong scaling

of the deforming bubble problem are shown in Fig. 6. Each

bar shows compute/communication (lighter color, marked as

Com) and I/O time (darker color, marked as IO). One can

see that while keeping the problem size fixed, using more

nodes results in less total simulation time. For all the cases

the time taken by synchronous I/O is greater than that of

asynchronous I/O; this is due to the savings provided by

using asynchronous I/O. The checkpoint file is written in

the background by using threading while communication and

computation for the simulation continue. For the 64-node case

the I/O time as a percentage of the total simulation time goes

down from 22.3% to 4.7%. For the 256-node case, the I/O time

is significantly higher for the synchronous case; this is due to

the fact that a lot of communication is required to write the file

to disk from 256 nodes (or 5,376 MPI ranks) and the GPFS

file system on Summit does not scale well. The asynchronous
I/O time for 256 nodes remains the same as for other cases,

but the Com time has increased because a greater percentage

of Com time overlaps with IO time.

D. Streaming Sine Wave

We set up a Cartesian grid +cartesian in three di-

mensions -3d and set the number of cells per block to

16 in each dimension -nxb=16 -nyb=16 -nzb=16. The

16

(a) Sod - weak scaling, 16 to 128 nodes

(b) Sod - strong scaling, problem size 64x64x64

Fig. 5: Weak and strong scaling for the Sod problem, each node with 42
MPI ranks. Com: compute and communication time (with light color), IO:
I/O time (with dark color), Syn: synchronous I/O, Asy: asynchronous I/O,
SynUFS: synchronous with UnifyFS, AsyUFS: asynchronous with UnifyFS,
T1: MPI with single thread, TM: MPI with thread multiple support. The two
UnifyFS cases (annotated with * at the end) are writing data to node-local
SSD; others are writing to the disk-based GPFS.

Fig. 6: Deforming bubble - strong scaling

neutrino degrees of freedom are set by choosing an energy

grid of 16 elements nE=16, two neutrino species νe and

ν̄e nSpecies=2, four moments of the neutrino distribution

that include the zeroth moment and three components of

the first moment nMoments=4, and a second-order phase

space discretization nNodes=2. This sets the data size per

block to be stored and written in the checkpoint files as

NXB ×NY B ×NZB × nE × nSpecies × nMoments ×
nNodes × 8 bytes/block = 8.4MB/block. The total size

required for the neutrino data can then be calculated by using

the total number of blocks, which is set in the flash.par
file via nblockx, nblocky, and nblockz. We set the

closure prescription for higher-order moments to the Minerbo

method with momentClosure=MINERBO and choose the

Fig. 7: Streaming sine wave - strong scaling

non-relativistic solver with thornadoOrder=ORDER_1.
The OpenACC directives are enabled with +thornadoACC.
Unlike the Sod and deforming bubble problems, the stream-

ing sine wave problem uses GPUs, using all available compute

resources: GPU and CPU (threading). Allocating resources and

GPUs is critical to the performance and overall simulation

time. For the results presented here, we use one GPU per

MPI rank, and the data is copied from GPU to CPU memory

automatically by FLASH-X before written out, which takes an

insignificant amount of time compared to file I/O operations.

Figure 7 shows the strong-scaling results for synchronous and

asynchronous I/O cases going from 64 nodes to 512 nodes.

The total time required by synchronous I/O increases with

increasing number of nodes. This is due to the fact that

communication is time-consuming and the GPFS file-system

write operation does not scale well. For the 256-node case,

we see that total I/O time required is 19.1% of the total

simulation time for the synchronous I/O, and it goes down

to 6.2% for the asynchronous case. At a higher number of

nodes the interference between COM time and IO is higher

as the I/O time as a whole increases: it is 27.1% for the 256-

node synchronous case. Despite the increase in COM time

the asynchronous I/O results in significant savings in the total

time required by the simulations.

V. CONCLUSION

In this work we present a performance evaluation of various

problems from Flash-X that show significant performance

gains by enabling asynchronous I/O. Heterogeneous applica-

tions utilizing MPI threads and GPUs are carefully chosen

and set up to understand the limitations and advantages of

the proposed method.For all the problems, we find the total

simulation time for asynchronous I/O is lower than that for the

synchronous case. The Flash-X code main branch already sup-

ports this feature, and it can be invoked by simply adding the

+hdf5AsyncIO setup option in the setup command. We study

three problems: Sod uses AMReX for mesh refinement and

communication, deforming bubble uses Paramesh and only

MPI (no threads), and streaming sine wave uses also GPUs for

computations. For all the problems the use of asynchronous

I/O causes a reduction in the total simulation time. In the

future, we want to add compression to the checkpoint files

written asynchronously and study the performance.

17

ACKNOWLEDGMENT

This research was supported by the Exascale Computing

Project (17-SC-20-SC), a collaborative effort of the U.S.

Department of Energy Office of Science and the National

Nuclear Security Administration. This research used resources

of the Oak Ridge Leadership Computing Facility, which

is a DOE Office of Science User Facility supported under

Contract DE-AC05-00OR22725. This material is based upon

work supported by the U.S. Department of Energy, Office of

Science, under contract number DE-AC02-06CH11357.

REFERENCES

[1] M. Hereld, J. A. Insley, E. C. Olson, M. E. Papka, T. D. Uram, and
V. Vishwanath, “Modeling resource-coupled computations,” in Proceed-
ings of the 2009 Workshop on Ultrascale Visualization, 2009, pp. 27–33.

[2] C. Uphoff, S. Rettenberger, M. Bader, E. H. Madden, T. Ulrich,
S. Wollherr, and A.-A. Gabriel, “Extreme scale multi-physics
simulations of the Tsunamigenic 2004 Sumatra earthquake,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’17. New
York, NY, USA: Association for Computing Machinery, 2017. [Online].
Available: https://doi.org/10.1145/3126908.3126948

[3] A. Dubey, K. Weide, J. O’Neal, A. Dhruv, S. Couch, J. A. Harris,
T. Klosterman, R. Jain, J. Rudi, B. Messer et al., “Flash-x: A multi-
physics simulation software instrument,” SoftwareX, vol. 19, p. 101168,
2022.

[4] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An
overview of the HDF5 technology suite and its applications,” in
EDBT/ICDT, 2011, pp. 36–47.

[5] S. Byna, M. Breitenfeld, B. Dong, Q. Koziol, E. Pourmal, D. Robinson,
J. Soumagne, H. Tang, V. Vishwanath, and R. Warren, “ExaHDF5:
Delivering efficient parallel I/O on exascale computing systems,” JCST,
vol. 35, pp. 145–160, 2020.

[6] H. Tang, Q. Koziol, S. Byna, J. Mainzer, and T. Li, “Enabling transparent
asynchronous I/O using background threads,” in 2019 IEEE/ACM Fourth
International Parallel Data Systems Workshop (PDSW). IEEE, 2019,
pp. 11–19.

[7] H. Tang, Q. Koziol, S. Byna, and J. Ravi, “Transparent asynchronous
parallel I/O using background threads,” IEEE TPDS, p. 1, 2021.

[8] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks, P. Carns,
A. Castelló, D. Genet, T. Herault et al., “Argobots: A lightweight low-
level threading and tasking framework,” IEEE JPDS, 2017.

[9] A. Moody, D. Sikich, N. Bass, M. J. Brim, C. Stanavige, H. Sim,
J. Moore, T. Hutter, S. Boehm, K. Mohror, D. Ivanov, T. Wang, C. P.
Steffen, and U. N. N. S. Administration, “UnifyFS: A distributed
burst buffer file system - 0.1.0,” 10 2017. [Online]. Available:
https://www.osti.gov//servlets/purl/1408515

[10] A. Dhruv, E. Balaras, A. Riaz, and J. Kim, “An investigation
of the gravity effects on pool boiling heat transfer via high-
fidelity simulations,” International Journal of Heat and Mass
Transfer, vol. 180, p. 121826, 2021. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0017931021009315

[11] “Thornado,” https://github.com/endeve/thornado.
[12] OLCF, “Spectral library,” https://www.olcf.ornl.gov/spectral-library/.

18

APPENDIX

A. HDF5 Async VOL connector Setup

e x p o r t HDF5 PLUGIN PATH=”<pa th>/vol − async / s r c ”
e x p o r t HDF5 VOL CONNECTOR=” async unde r vo l =0; u n d e r i n f o ={}”
e x p o r t ABT THREAD STACKSIZE=100000
e x p o r t HDF5 ASYNC EXE FCLOSE=1

B. UnifyFS Setup

module use / sw / summit / u n i f y f s / mo d u l e f i l e s
module l o ad u n i f y f s / 1 . 0 − b e t a / mpi−mount −gcc9
e x p o r t UNIFYFS LOGIO SPILL DIR=/mnt / s sd / $USER / d a t a
e x p o r t UNIFYFS LOG DIR=$JOBSCRATCH/ l o g s
e x p o r t s h a r e d i r = / gp f s / a l p i n e / $PROJ / s c r a t c h / $USER / j o b s /
u n i f y f s s t a r t −− sha r e − d i r = $ s h a r e d i r

C. MPI-IO Hints

We set the MPI-IO hints (using the “ROMIO HINTS” environment variable) to substantially reduce the total time to write

the HDF5 file. ROMIO HINTS directs the use of optimized MPI directives for writing the file in much bigger chunks. Using

these, one can reduce the total I/O time by a factor of 100. Below is an example setup for using 128 Summit nodes.

rom io cb wr i t e = en ab l e
r om io d s w r i t e = d i s a b l e
romio cb read = en ab l e
c b b u f f e r s i z e = 16777216
cb nodes = 128
c b c o n f i g l i s t = * :1

D. Flash-X Setup

We used the following Flash-X setup commands for the three sets of experiments in our paper:

Sod
. / s e t u p Sod − au t o −3d +hd f5a sync +cube16 B i t t r e e =True +amrex +hdf5AsyncIO

Deforming Bubble
. / s e t u p incompFlow / DeformingBubble − au t o −3d −nxb=16 −nyb=16 −nzb=16 +amrex −− o b j d i r =df1 + p a r a l l e l I O + hd f 5 a s yn c i o −

make f i l e =gcc

S t r e aming S ine Wave
. / s e t u p St reamingSineWave − au t o −3d + c a r t e s i a n −nxb=16 −nyb=16 −nzb=16 nE=16 nSpe c i e s =2 nNodes=2 nMoments=4 momentClosure=

MINERBO − p a r f i l e = t e s t p a r ame sh 3d . pa r +amrex +thornadoACC tho r n adoOrde r =ORDER 1

19

