
High-throughput Small File Access for
Large-scale Machine Learning Applications

Hiroki Ohtsuji, Erika Hayashi, Takuya Okamoto, Eiji Yoshida
FUJITSU LIMITED

Kawasaki, Japan

Osamu Tatebe
University of Tsukuba

Tsukuba, Japan

I. INTRODUCTION

Storage systems used in high-performance computing are required
to provide a high-throughput fine-grained data access method due
to the increasing amount of data handled by machine learning
applications. For example, according to [1], the number of data
handled by modern language models is increasing at a rate of 10x per
year. As the number of data increases, the number of files stored in
the storage system also increases. Considering the pre-processing of
datasets with various type of scripts, archiving formats optimized for
learning frameworks such as TFRecord cannot fit all environments.
Since access to the data stored in the shared storage system is
performed via the network, the existence of a large number of files
results in a large amount of communication and data processing. In
this abstract, we describe a method for high throughput data access to
a large number of small files using the RPC implementation, which
is designed to use NVM as a storage device, and evaluation results
of its access performance.

II. OVERHEAD AND OPTIMIZATION METHOD OF REMOTE FILE

ACCESS

Remote file access to shared storage has multiple bottlenecks
between the application and the server. These bottlenecks are caused
by system calls and multiple function calls required for network
communication and data processing. The authors aim to optimize
this path by speeding up the processing in the server, client-
side programs, and application interfaces. The first two of them
are realized by polling-based asynchronous RPC, and the last one
is accelerated by asynchronous internal parallel processing while
maintaining synchronous semantics of the application interface. This
abstract describes the first two parts of the above items.

III. THE LIGHTWEIGHT REMOTE FILE ACCESS

Lightweight remote file access can reduce the overhead incurred on
both the client and server sides. As shown in Fig. 1, the I/O system
call issued by the application is hooked by the preload library, and
the request is sent to the server through asynchronous communication
regardless of the type of the I/O request. On the server, data access
is also performed asynchronously as memory access.

���

������ �	

���� ����

��	�������

����� �����

��������	

������

����
�

������

���������������

	 ��������

Fig. 1: A functional diagram of the lightweight remote file access
mechanism.

�

������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�	
�� ���
���� �	
�� ������

������	
����������� �� �!�"	��#	!� 	����	��

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

Fig. 2: Throughput comparison between conventional I/O and
lightweight I/O mechanism. Serial is when the application issues
requests sequentially, and the other is when the application issues
requests in parallel or asynchronously.

IV. EVALUATION

A comparison of the access performance between conventional
remote file access and lightweight remote file access was performed.
The former is achieved by accessing tmpfs on a remote node shared
by NFS, while the latter is achieved by using an access library and
RPC mechanism developed by the authors. The size of the target
file is 1KB. Since the purpose of this evaluation is to know the
processing performance of remote file access, the data to be read
was placed in the consecutive space on DRAM. The performance
of sequential access and asynchronous access were evaluated. In
the case of NFS, asynchronous access was performed by running
eight processes of the benchmark program simultaneously. In the
case of lightweight access, asynchronous RPC requests are used. The
results show that the lightweight implementation is 9.5 times faster
for sequential access and 12.3 times faster for asynchronous access. It
can be expected to provide sufficient access performance for machine
learning applications over the next few years.

V. CONCLUSION AND FUTURE WORK

This abstract described the problem of small file access, which
is increasing due to new workloads such as machine learning and
showed the design of the lightweight remote file access method to
reduce the overhead. Our implementation has demonstrated higher
performance compared to the conventional method. The authors are
planning to implement the design to a full-featured parallel file system
to evaluate the performance with real applications.

REFERENCES

[1] Open AI. Better Language Models and Their Implications.
https://openai.com/blog/better-language-models/.

[2] readfile: implement readfile syscall.
https://lore.kernel.org/lkml/
20200704140250.423345-2-gregkh@linuxfoundation.org/.

