
Network-accelerated Distributed File Systems
Salvatore Di Girolamo, Daniele De Sensi, Konstantin Taranov, Milos Malesevic, Maciej Besta,

Timo Schneider, Severin Kistler, Torsten Hoefler
firstname.lastname@ethz.com

ETH Zurich, Switzerland

ACM Reference Format:
Salvatore Di Girolamo, Daniele De Sensi, Konstantin Taranov, Milos Male-
sevic, Maciej Besta,, Timo Schneider, Severin Kistler, Torsten Hoefler. 2021.
Network-accelerated Distributed File Systems. In Proceedings of PDSW ’21:
6th International Parallel Data Systems Workshop (PDSW ’21). ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 EXTENDED ABSTRACT
Fast, scalable, and reliable storage is a first-class requirement of both
HPC systems and datacenters. Applications constantly interface
the file system to read input data or write newly produced one.
This happens not only in the startup or finalization phases but
throughout the application’s lifespan. Examples of applications
heavily interfacing the file system are deep neural network training
and scientific simulations. In the former, I/O overheads can account
for up to 60% of the total running time [8] (e.g., reading training
datasets) while in the latter it can reach up to 90% of the runtime [5]
(e.g., writing and reading checkpoints, writing simulation results).

Distribute File Systems (DFSs) play a fundamental role in tackling
the I/O bottleneck. By decoupling control and data plane, these
architectures can be easily managed and scaled out. Storage policies
are defined in the control plane, and express how data must be
stored (e.g., replicated or erasure-coded) and how it can be accessed
(e.g., client authentication, permissions). For example, if and how a
file must be replicated or erasure-coded is defined in the control
plane, while the actual replication or erasure coding (EC) process
happens in the data plane.

Until recently, the performance of data-path storage operations
has been greatly limited by the performance of the storage media
(e.g., disks or SSDs). This led to the introduction of complex soft-
ware layers in DFSs for avoiding this bottleneck with optimizations
such as batching and striping, and efficiently enforcing storage poli-
cies. As accesses were dominated by storage performance, other
factors like network performance, multiple data copies, and CPU
utilization became of negligible importance. However, with the
emergence of dense, byte-addressable non-volatile main memo-
ries (NVMMs) [10], this basic assumption must be revised. In fact,
NVMMs have performance characteristics close to DRAM [6], and
are several orders of magnitude faster than hard drives and SSDs.
Suddenly, factors as network performance and software overheads
play again an important role and must be optimized to not let them
become bottlenecks.

For this reason, remote direct memory access (RDMA) [1] has
been the focus of many DFS optimizations [2, 3, 9, 11, 12]. RDMA
is designed to provide low latency and high bandwidth one-sided
communications, where nodes can access memory of remote peers

PDSW ’21, November 15, 2021, St. Louis, MO
2021. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

(in the DFS case, of the storage nodes) without involving their
CPUs. Since the use of high-level libraries that utilize RDMA but
hide RDMA accesses produce limited benefits to DFSs, researchers
started proposing DFSs that have low-level RDMA operations in
their core design [7, 13, 14].

Primary
NIC CPU

Secondary
NIC CPU

Tertiary
NIC CPU

Client Primary
NIC CPU

Secondary
NIC CPU

Tertiary
NIC CPU

Client

RDMA sPIN

control (ACK)data (RDMA) replication

Figure 1: Example of a DFS policy (data replication). In the
RDMAcase (left), the clientwrites to each replica node.With
sPIN (right), the policy is offloaded to the NIC of the storage
nodes, that propagate the data on a per-packet basis.

Even though RDMA communications do not involve the CPU of
the storage node, DFS policies cannot be enforced unless the CPU
of the storage node is notified through, e.g., remote procedure calls
(RPC), possibly losing the zero-copy benefits of RDMA. Alterna-
tively, some DFS policies such as replication can be enforced at the
client, even though this might limit their efficiency. For example,
Figure 1 (left) shows the case where the client enforces replication
by sending data to all storage nodes acting as replicas.

We investigate howpost-RDMAsolutions like sPIN,which
enable applications to install custom packet handlers on the
network interface card (NIC), can be used to runDFS policies
directly on the data path. In this way, we keep the benefits of
RDMA (no CPU involvement, low latency, and high throughput),
while being able to apply DFS policies on a per-packet basis. Figure 1
(right) shows an overview of our approach for the data replication
policy: instead of forcing the client to send the data to each replica,
data is forwarded directly by the NICs of the storage nodes, on
a per-packet basis. There, sPIN packet handlers run DFS policies,
eventually forwarding the packets to othre storage nodes in case
of data replication or erasure coding is needed. No per-client hard
state is kept on the NIC, avoiding additional network round trips for,
e.g., establishing connections. By using PsPIN [4], an open-source
implementation of sPIN, we show how processing packets on the
data path can produce latency improvements for writes (up to 2x),
data replication (up to 4x), and erasure coding (up to 3x), when
compared to comparable non-offloaded versions.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

PDSW ’21, November 15, 2021, St. Louis, MO Di Girolamo, et al.

REFERENCES
[1] InfiniBand Trade Association. 2004. InfiniBand Architecture Specification, Vol-

ume 1, Release 1.2.
[2] Dhruba Borthakur et al. 2008. HDFS architecture guide. Hadoop Apache Project

53, 1-13 (2008), 2.
[3] Peter Braam. 2019. The Lustre storage architecture. arXiv preprint

arXiv:1903.01955 (2019).
[4] Salvatore Di Girolamo, Andreas Kurth, Alexandru Calotoiu, Thomas Benz, Timo

Schneider, Jakub Beranek, Luca Benini, and Torsten Hoefler. 2021. A RISC-V in-
network accelerator for flexible high-performance low-power packet processing.
In 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA).

[5] Sriram Lakshminarasimhan, David A Boyuka, Saurabh V Pendse, Xiaocheng Zou,
John Jenkins, Venkatram Vishwanath, Michael E Papka, and Nagiza F Samatova.
2013. Scalable in situ scientific data encoding for analytical query processing.
In Proceedings of the 22nd international symposium on High-performance parallel
and distributed computing. 1–12.

[6] Hai-Kun Liu, Di Chen, Hai Jin, Xiao-Fei Liao, Binsheng He, Kan Hu, and Yu Zhang.
2021. A Survey of Non-Volatile Main Memory Technologies: State-of-the-Arts,
Practices, and Future Directions. Journal of Computer Science and Technology 36,
1 (2021), 4–32.

[7] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an RDMA-enabled
distributed persistent memory file system. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17). 773–785.

[8] Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji. 2017. Parallel I/O op-
timizations for scalable deep learning. In 2017 IEEE 23rd International Conference
on Parallel and Distributed Systems (ICPADS). IEEE, 720–729.

[9] Robert B Ross, Rajeev Thakur, et al. 2000. PVFS: A parallel file system for Linux
clusters. In Proceedings of the 4th annual Linux showcase and conference. 391–430.

[10] Arthur Sainio. 2016. NVDIMM: changes are here so what’s next. Memory
Computing Summit (2016).

[11] Frank B Schmuck and Roger L Haskin. 2002. GPFS: A Shared-Disk File System
for Large Computing Clusters.. In FAST, Vol. 2.

[12] Lizhe Wang, Yan Ma, Albert Y Zomaya, Rajiv Ranjan, and Dan Chen. 2014.
A parallel file system with application-aware data layout policies for massive
remote sensing image processing in digital earth. IEEE Transactions on Parallel
and Distributed Systems 26, 6 (2014), 1497–1508.

[13] Jian Yang, Joseph Izraelevitz, and Steven Swanson. 2019. Orion: A distributed
file system for non-volatile main memory and RDMA-capable networks. In 17th
USENIX Conference on File and Storage Technologies (FAST 19). 221–234.

[14] Jian Yang, Joseph Izraelevitz, and Steven Swanson. 2020. FileMR: Rethinking
RDMA Networking for Scalable Persistent Memory. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20). 111–125.

	1 Extended abstract
	References

