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1 EXTENDED ABSTRACT
Fast, scalable, and reliable storage is a first-class requirement of both
HPC systems and datacenters. Applications constantly interface
the file system to read input data or write newly produced one.
This happens not only in the startup or finalization phases but
throughout the application’s lifespan. Examples of applications
heavily interfacing the file system are deep neural network training
and scientific simulations. In the former, I/O overheads can account
for up to 60% of the total running time [8] (e.g., reading training
datasets) while in the latter it can reach up to 90% of the runtime [5]
(e.g., writing and reading checkpoints, writing simulation results).

Distribute File Systems (DFSs) play a fundamental role in tackling
the I/O bottleneck. By decoupling control and data plane, these
architectures can be easily managed and scaled out. Storage policies
are defined in the control plane, and express how data must be
stored (e.g., replicated or erasure-coded) and how it can be accessed
(e.g., client authentication, permissions). For example, if and how a
file must be replicated or erasure-coded is defined in the control
plane, while the actual replication or erasure coding (EC) process
happens in the data plane.

Until recently, the performance of data-path storage operations
has been greatly limited by the performance of the storage media
(e.g., disks or SSDs). This led to the introduction of complex soft-
ware layers in DFSs for avoiding this bottleneck with optimizations
such as batching and striping, and efficiently enforcing storage poli-
cies. As accesses were dominated by storage performance, other
factors like network performance, multiple data copies, and CPU
utilization became of negligible importance. However, with the
emergence of dense, byte-addressable non-volatile main memo-
ries (NVMMs) [10], this basic assumption must be revised. In fact,
NVMMs have performance characteristics close to DRAM [6], and
are several orders of magnitude faster than hard drives and SSDs.
Suddenly, factors as network performance and software overheads
play again an important role and must be optimized to not let them
become bottlenecks.

For this reason, remote direct memory access (RDMA) [1] has
been the focus of many DFS optimizations [2, 3, 9, 11, 12]. RDMA
is designed to provide low latency and high bandwidth one-sided
communications, where nodes can access memory of remote peers
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(in the DFS case, of the storage nodes) without involving their
CPUs. Since the use of high-level libraries that utilize RDMA but
hide RDMA accesses produce limited benefits to DFSs, researchers
started proposing DFSs that have low-level RDMA operations in
their core design [7, 13, 14].
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Figure 1: Example of a DFS policy (data replication). In the
RDMAcase (left), the clientwrites to each replica node.With
sPIN (right), the policy is offloaded to the NIC of the storage
nodes, that propagate the data on a per-packet basis.

Even though RDMA communications do not involve the CPU of
the storage node, DFS policies cannot be enforced unless the CPU
of the storage node is notified through, e.g., remote procedure calls
(RPC), possibly losing the zero-copy benefits of RDMA. Alterna-
tively, some DFS policies such as replication can be enforced at the
client, even though this might limit their efficiency. For example,
Figure 1 (left) shows the case where the client enforces replication
by sending data to all storage nodes acting as replicas.

We investigate howpost-RDMAsolutions like sPIN,which
enable applications to install custom packet handlers on the
network interface card (NIC), can be used to runDFS policies
directly on the data path. In this way, we keep the benefits of
RDMA (no CPU involvement, low latency, and high throughput),
while being able to apply DFS policies on a per-packet basis. Figure 1
(right) shows an overview of our approach for the data replication
policy: instead of forcing the client to send the data to each replica,
data is forwarded directly by the NICs of the storage nodes, on
a per-packet basis. There, sPIN packet handlers run DFS policies,
eventually forwarding the packets to othre storage nodes in case
of data replication or erasure coding is needed. No per-client hard
state is kept on the NIC, avoiding additional network round trips for,
e.g., establishing connections. By using PsPIN [4], an open-source
implementation of sPIN, we show how processing packets on the
data path can produce latency improvements for writes (up to 2x),
data replication (up to 4x), and erasure coding (up to 3x), when
compared to comparable non-offloaded versions.
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