PDSW'21

N\

Verifying 10
from MP]

\{" &21 St. Louis, MO

Motivation

* Most HPC applications use POSIX compliant Parallel File Systems

* POSIX Semantics: write will be immediately visible to read
-- Provided accesses are not concurrent

* Concurrent events could return partial results
-- Likely bug in your application or 1/O library

e Answer this question - "Are I/O operations of HPC applications
properly synchronized?"

)= SC21

Approach

1.

St. Louis, MO

Idea: Leverage the order guaranteed by MPI Standard to generate "Happens-Before"

between I/O operations and verify the synchronization.

MPI Communications:
 MPI_SEND() ---> MPI_RECV()

« MPI_BCAST()

"Happens-Before" relation is the transitive closure of the order imposed by
the semantics of MPI communication operations and the program order

within each process.

Two 1/O operations are synchronized if they are ordered by this

happen-before order.

Tracing Tool: Recorder - github.com/uiuc-hpc/Recorder

Ik Readme

I /O Traces of FLASH

I /O Traces of LAMMPS
I /O Traces of NWChem
I /O Traces of Chombo
I /O Traces of Nek5000
I /O Traces of ParaDiS
I /O Traces of VASP

I /O Traces of LBANN

I /O Traces of GAMESS
I VO Traces of GTC

I /O Traces of QMCPACK
I /O Traces of ENZO

I VO Traces of MILC-QCD
I VO Traces of MACSio
I /O Traces of pF3D-10
I /O Traces of VPIC-IO
I VO Traces of HACC-IO

Traces from 17 Scientific applications — https://library.ucsd.edu/dc/object/bb95276921

http://github.com/uiuc-hpc/Recorder
https://library.ucsd.edu/dc/object/bb95276921

Generate

Trace
Records

e Generate Trace
files

e |[dentify the
required calls -
(Rank No., Index
No.)

Generate

Causality
Order

e Matching
Algorithm

* DAG to
represent
Happens-Before
Order

Verification

Process

e Detect Conflict
Accesses

e Check for
synchronization

SC21

Phase 1

* Recorder generates one file each for the process
* Includes MPI-10, HDF5, POSIX

* The records contain the values of all of the parameters supplied to those operations, e.g., for /0O, file
name, offset, and flags.

dest

MPI_Isend Ox7fffffff63b0 MPI_BYTE MPI_COMM_WORLD ox7fffo
aft44dds8
346474 346525 MPI_ Recv ox7fffoaf44e00 10 MPI INT 1 1 MPI_ COMM_WORLD == ox7fffoa
f44dde
353 2559 MPI Wait -- -- -- -- -- -- ox7fffo ox7fffoa

af44ddo f44deo

13755 14654 MPI_Bcast Ox7ffda5ebco34 1 MPI_INT 0 = MPI_COMM_WORLD — = ==

e Each record can be uniquely identified by the file containing the record, and by the sequence number of
the record - (Rank No, Sequence id)

)= SC21
Phase 2

Point-to-Point

MPI_Send(const void *buf, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm)

MPI_Recv(void *buf, int count,
MPI Datatype datatype, int source, int
tag, MPI_Comm comm, MPI Status *status)

St. Louis, MO

[f call == MPI_Send:
Read Destination
Go to Destination Rank:
Find MPI_Recv with source = dest

Collective

MPI_Bcast(void *buffer, int count,
MPI_Datatype datatype, int root,
MPI_Comm comm)

[f call == MPI_Bcast:
Read Root
For every rank in the communicator:
Find Bcast with root = Root

Non-blocking

MPI_Irecv(void *buf, int count,
MPI_Datatype datatype, int source, int
tag, MPI_Comm comm, MPI_Request *request)

MPI_Wait(MPI_Request *request, MPI_Status
*status)

For a matching Irecv:
Read Request
Continue surfing calls in this rank
Wait/Waitall with request = Request

)= SC21

St. Louis, MO

Implementation

recv_call_ids

1 2

Coll_call_ids
Key:(func_name, comm)
Value: list of ids

(MPI1_Barrier, comm1) [4,7]

(MPI_lalltoall, comm?2) [5]

wait_test_call_ids

6 8

all_calls

0 MPI_Send(dts, tag, comm1)

1 MPI_Recv(src, tag, comm1)

2 MPI_Recv(src, tag, comm1)

3 MPI_Isend(dst, tag, comm2, reql)
4 MPI_Barrier(comm1)

5 MPI_lalltoall(comm2, req2)

6 MPI_Wait(reql)

7 MPI_Barrier(comm1)

8 MPI_Test(req2)

e All_calls:
e Calls from Phase 1
e Coll_call_ids:
= Hashtable:
e Key: MPI_COLL
call
* Value: Index in the
list
 Recv_call_ids:
= |ndex of Recv calls in
the list
= Prevents reiterating
over already matched
calls
 Wait_test_call_ids:
= Similar to
Recv_call ids

\F &21 St. Louis, MO

---------------------------- 4’[Barrier Tﬁ |/20\+_~ 3

py- T - — - |

a) MPI_Barrier b) MPI_Bcast c) MPI_Send/Recv

St. Louis, MO

 Algorithm from prior work!* to detect conflicting 1/O operations:

 RW-[S|D]: read conflicting with a write by the same process (S) or by different
(D) processes.

« WW-[S|D]: write conflicting with another write by the same process (S) or by
different (D) processes.

* For each of the detected conflict pair — verify from the Happens before order
Verify the order of conflicting pairs from the DAG.

[1] C. Wang, K. Mohror, and M. Snir, “File system semantics requirements of HPC applications,” in Proceedings of the 30t" International
Symposium on High-Performance Parallel and Distributed Computing, HPDC'21, NY, USA: Available: https://doi.org/10.1145/3431379.3460637

https://doi.org/10.1145/3431379.3460637

\{" &21 St. Louis, MO

Experiments and Results

All the experiments to study tool's scalability and perfromance were performed on:

An Intel x86_64 architecture machine with
2-core/4-thread 2.90 GHz Intel i5-5300U processor

8GB main memory running Ubuntu 21.04 operating system and

Python version 2.7.18.

EVALUATION St. Lovuis, MO

Flash GAMESS
7 300000 16 1200000
6 250000 W 1000000
: 12
2000 800000 @
§4 S § 8
- 150000 3 ~ 8 600000
))) @)
ES - 5
i 100000 % 400000 3
. 4
1 50000 ; 200000
0 0 0 0
0 5 100 150 200 250 300 0 5 100 150 200 250 300
ranks # ranks

~o=time =o=# calls ==time =e=7# calls

\{" &21 St. Louis, MO

Observations

 The number of recorded calls increases linearly with the number of ranks (weak scaling)
e Our algorithm’s execution time increases linearly as the numberof MPI ranks
 The number of nodes and edges is roughly proportional to the number of calls

e Querying the DAG to verify synchronization - a millisecond per conflicting pair.

Application | I/O Library SWWD SRW D Syﬁiﬁfﬁ:& -
FLASH HDF5 v | vV v
ENZO HDF5 v v
NWChem POSIX v v v
pF3D-10 POSIX v v
MACSio Silo v v
GAMESS POSIX v v
LAMMPS ADIOS v v
LAMMPS NetCDF v v

\{" &21 St. Louis, MO

Conclusion

In this work, we presented a tool to verify that IO operations in HPC codes are properly
synchronized.

Total of 17 applications were studied:

* 10 applications — No conflicts
» 7 applications — Conflicting I/O accesses were properly synchronized

Applications:

Programmers can use the tool to check that their 10 code is race-free.

The 10 of HPC applications to be race-free and to use this assumption in the design of
Parallel File Systems.

The timestamp order of conflicting file accesses matched the happens-before order

PDSW'21

