
Verifying IO Synchronization
from MPI Traces

S. Yellapragada, C. Wang, M. Snir

University of Illinois Urbana-Champaign

PDSW'21

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Most HPC applications use POSIX compliant Parallel File Systems
• POSIX Semantics: write will be immediately visible to read

-- Provided accesses are not concurrent
• Concurrent events could return partial results

-- Likely bug in your application or I/O library
• Answer this question - "Are I/O operations of HPC applications

properly synchronized?"

Motivation

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

1. Idea: Leverage the order guaranteed by MPI Standard to generate "Happens-Before"
between I/O operations and verify the synchronization.

2. MPI Communications:
• MPI_SEND() ---> MPI_RECV()
• MPI_BCAST()

3. "Happens-Before" relation is the transitive closure of the order imposed by
the semantics of MPI communication operations and the program order
within each process.

4. Two I/O operations are synchronized if they are ordered by this
happen-before order.

5. Tracing Tool: Recorder - github.com/uiuc-hpc/Recorder
6. Traces from 17 Scientific applications – https://library.ucsd.edu/dc/object/bb95276921

Approach

http://github.com/uiuc-hpc/Recorder
https://library.ucsd.edu/dc/object/bb95276921

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

Design

•Generate Trace
files

•Identify the
required calls -
(Rank No., Index
No.)

Generate
Trace

Records

•Matching
Algorithm

•DAG to
represent
Happens-Before
Order

Generate
Causality

Order

•Detect Conflict
Accesses

•Check for
synchronization

Verification
Process

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Recorder generates one file each for the process
• Includes MPI-IO, HDF5, POSIX
• The records contain the values of all of the parameters supplied to those operations, e.g., for I/O, file

name, offset, and flags.

• Each record can be uniquely identified by the file containing the record, and by the sequence number of
the record - (Rank No, Sequence id)

T_start T_end MPI_Call buffer count MPI_Datatype source/
dest

tag Communicator request status

315 343 MPI_Isend 0x7fffffff63b0 4 MPI_BYTE 0 123 MPI_COMM_WORLD 0x7fff0
af44dd8

--

346474 346525 MPI_Recv 0x7fff0af44e00 10 MPI_INT 1 1 MPI_COMM_WORLD -- 0x7fff0a
f44dd0

353 2559 MPI_Wait -- -- -- -- -- -- 0x7fff0
af44dd0

0x7fff0a
f44de0

13755 14654 MPI_Bcast 0x7ffda5ebc034 1 MPI_INT 0 -- MPI_COMM_WORLD -- --

Phase 1

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

Phase 2

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• All_calls:
• Calls from Phase 1

• Coll_call_ids:
§ Hashtable:

• Key: MPI_COLL
call

• Value: Index in the
list

• Recv_call_ids:
§ Index of Recv calls in

the list
§ Prevents reiterating

over already matched
calls

• Wait_test_call_ids:
§ Similar to

Recv_call_ids

Implementation

0 MPI_Send(dts, tag, comm1)

1 MPI_Recv(src, tag, comm1)

2 MPI_Recv(src, tag, comm1)

3 MPI_Isend(dst, tag, comm2, req1)

4 MPI_Barrier(comm1)

5 MPI_Ialltoall(comm2, req2)

6 MPI_Wait(req1)

7 MPI_Barrier(comm1)

8 MPI_Test(req2)

all_calls

1 2

6 8

(MPI_Barrier, comm1) [4,7]

(MPI_Ialltoall, comm2) [5]

recv_call_ids

wait_test_call_ids

Coll_call_ids
Key:(func_name, comm)
Value: list of ids

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

a) MPI_Barrier b) MPI_Bcast c) MPI_Send/Recv

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• Algorithm from prior work[1] to detect conflicting I/O operations:
• RW-[S|D]: read conflicting with a write by the same process (S) or by different

(D) processes.
• WW-[S|D]: write conflicting with another write by the same process (S) or by

different (D) processes.
• For each of the detected conflict pair – verify from the Happens before order

Verify the order of conflicting pairs from the DAG.

[1] C. Wang, K. Mohror, and M. Snir, “File system semantics requirements of HPC applications,” in Proceedings of the 30th International
Symposium on High-Performance Parallel and Distributed Computing, HPDC'21, NY, USA: Available: https://doi.org/10.1145/3431379.3460637

Phase 3

https://doi.org/10.1145/3431379.3460637

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

All the experiments to study tool's scalability and perfromance were performed on:

• An Intel x86_64 architecture machine with
• 2-core/4-thread 2.90 GHz Intel i5-5300U processor
• 8GB main memory running Ubuntu 21.04 operating system and
• Python version 2.7.18.

Experiments and Results

St. Louis, MO science & beyond.St. Louis, MO science & beyond.EVALUATION

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• The number of recorded calls increases linearly with the number of ranks (weak scaling)
• Our algorithm’s execution time increases linearly as the numberof MPI ranks
• The number of nodes and edges is roughly proportional to the number of calls
• Querying the DAG to verify synchronization - a millisecond per conflicting pair.

Observations

St. Louis, MO science & beyond.St. Louis, MO science & beyond.

• In this work, we presented a tool to verify that IO operations in HPC codes are properly
synchronized.

• Total of 17 applications were studied:
• 10 applications – No conflicts
• 7 applications – Conflicting I/O accesses were properly synchronized

Applications:

• Programmers can use the tool to check that their IO code is race-free.
• The IO of HPC applications to be race-free and to use this assumption in the design of

Parallel File Systems.
• The timestamp order of conflicting file accesses matched the happens-before order

Conclusion

THANK YOU!
S. Yellapragada, C. Wang, M. Snir

University of Illinois Urbana-Champaign

PDSW'21

