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FEEDING DATA TO DNN TRAINING

Model Table Size (PB) Partition Size (PB)| Used Partition Size (PB)
RM1 13.45 0.15 11.95
° economlcally infeasible to keep the whole dataset in RM2 2918 0.32 25.94
DRAM during the training process ot 293 007 L
o ~ 95 million photos are uploaded to Instagram every day - i R
->~100TB / day : Preprocessing
. RM 1 Training
o 720,000 hours of video uploaded every day to YouTube 2 |
|
-> ~ 1 PB/day L 8
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o the sensors in an autonomous vehicle record between 1.4 Percent of Total Power
to 19 TB per hour, multiplied by ~600 Waymo fleets Data ingestion for recommendation models at Facebook
150
-> 6 1o 90 PB sensor data per day Required 1/O bandwidth for 8 A100 GPUs

» fast growth in ML compute capability

920

o huge recommendation models. i.e. 2-25 PB at Facebook 20
»
o
YouTube-100M DataSet °
e Size 30
o ~100M videos with video-level labels I I I
(~5 million hours, 600 years) ~——_ It'S BIG ; I__ IIIIII-IIIIII-IIII
o 20 billion input examples TP SR @ N 5 o N NN N O N
e Labels ,3@*02{\@‘;@@ N S S \ﬂg 6; 6:@é;:oé{;c&ﬁiv’ié\'@ra‘lj?fb‘f’%"i“145"3;\\:z\'\%fé"&‘fb‘ﬁbz@ie‘(‘te\\b&\@(@@@@(\
<& T NN ) N
o 30K labels (not all obviously acoustically relevant) ;@%@& e '@ L T EEL S g’r"ﬁ'@#@' &QZ'Q‘Q%Q’Q%Q *5?9\'@ &&;@Z@&;&i«é"
o ~3labels per videos 3 S @e‘:eeoje%o@ A é; N

by



1/0 ROOFLINE MODEL

1E+18
“Troubled models”
IO bandwidth bound
1E+17
N\
¥o)
—
o
<
N Squeezenet-1
% 1E+16 11 Iayers,
T 5MB weights 8 layers
”
- 233MB
d weights
g/ X\
~oC
'\Q)\E 6 \(\\e
N
1E+15 £
1000 10000

“Challenging models”: 10
bound if software improves

“Happy models”
Compute bound

Resnet-50
50 layers
98 MB weights SENet
50 layers
450 MB
weights

100000

|0 Arithmetic Intensity (F16/B)

126 PF16/s

Future models

Deeplab-res101-v2
101 layers
505 MB weights
large images

1000000



MULTI-TIER STORAGE IN HPC

@ @ @ Hierarchy:

Performance Tier IO nodes with SSDs or local
nvme SSDs

Bandwidth: B1
Capacity: C1

Bandwidth: B2
Capacity: C2

Parallel file system

or Cloud storage

Summit 4068 nodes aggregated:
e B1=261TB/s,B2=25TB/s, b_ratio=B1/B2 =104
e (Cl=74PB,C2=250PB, c_ratio=C1/C2=23%

Ref: https://www.osti.gov/servlets/purl/1619016
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EXAMPLE - NERSC CORI
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BANDWIDTH-AWARE MINI-EPOCH TRAINING

e Bandwidth aware iteration

« Split the entire epoch intfo <ne> mini-epochs s.t. each read at EB1, repeat until or early stop on mini-epoch
mini-epoch is smaller than 0.5 * C1 for non-overlapping ~ mini-epoch i+1 s loaded based on training feedback

. . . . . Save/Load training feedback
« while GPUs are iterating over mini-epoch i, prefetch (mini-epoch size, repeat factor)

another mini-epoch i+1 from the capacity tier to Performance Tier :
performance fier at B2.

« assuming GPUs are consuming data at (EB1), iterafe
over mini-epoch i <rf> number of times before the next

mini-epoch is completely loaded

mini-epochs

Monitor inter mini-epoch interval Tload at B2 Data tiering policy

Capacity Tier

The required code change to the ML applications is minimum.

« almost the same code applies to ImageNet, Youtube-8M, ML-20M dataset Epoch vs. Mini-Epoch vs. Mini-batch example
epoch = tfds.load(<dataset_name>, split=[f'train[{k}%:{k+10}%]' for k in range(0, 100, 12.5)]) * epoch: 100m - billions images
mini-epochs = [mini-epoch.repeat(16) for mini-epoch in epoch]| * mini-batch: a few thousand images
If the size of mini-epoch is not uniform, Dataset APIs are used * mini-epoch: ~ 10m images

epoch = tfds.load(<dataset_name>)
mini_epoch_sizes = [me1_size, me2_size, ...] # store the sizes for each mini-epoch
mini-epochs = []
for size in mini_epoch_size:
mini-epoch.append(epoch.take(size))

epoch = epoch.skip(size)



IMAGENET RESULTS

e No accuracy drop if <num_mini_epochs> and <repeating_factors> are within reasonable ranges, i.e. < 32
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MODEL CONVERGENCE FEEDBACK

e As the repeating factor at which convergence is affected
depends on the dataset and the model, a feedback
mechanism is implemented as an TF callback
« Record the loss/accuracy and other metrics at the end of

each mini-epoch. A score is calculated based on a
combination of the monitored metrics.

« If the score does not improve for a fixed number of tfimes,
early stop on this mini-epoch and wait until mini-epoch i+1
is fully loaded then move forward.

» Bollinger band-based adaptive repeating factor:

« consist of an N-period moving average MA of the score, a
lower band at K times an N-period standard deviation
below the moving average M A — K * std.

« Move to next mini-epoch if score goes below lower band

loss = logs.get("loss")

train_err = 1 - logs.get("accuracy")

val_err =1 - logs.get("val_accuracy")
metrics = np.array([loss, train_err, val_err])

current_score = np.dot(self.score_weights, metrics)

if np.less(current_score, self.score):
self.score = current_score
self.wait = 0 # Record the weights if current results is better (less).
else:
self.wait += 1
if self.wait >= self.wait_th:
# stop iterating over this mini-epoch and
# move forward to next mini-epoch when it’s loaded



YOUTUBE-8M RESULTS

Youtube-8m, MOE model for video-level data
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DEEPCAM RESULTS

e Exascale Deep Learning for Climate Analytics
« Gordon bell price winner, 2018

0.9 DeepLabv3+ for Climate Segmentation
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CONCLUSIONS

e evaluated three different applications with mini-epoch training andmost of the them worked out-of-the-box with
modest parameters of <num_mini_epochs> and <repeating_factor>

e 5% to 11% accuracy drop with fixed <repeating_factor> design compared to the baseline, while the adaptive repeating
factor was able close most of the accuracy gap

e significantly reduce bandwidth required to capacity tier and improve fime-to-convergence of |/O bounded training
e Mini-epoch training is a simple but effective solution with minimum code change required



