
I/O Bottleneck Detection and Tuning: Towards
Connecting the Dots using Interactive Log Analysis

Jean Luca Bez, Houjun Tang, Bing Xie, David Williams-Young,
Rob Latham, Rob Ross, Sarp Oral, and Suren Byna

1

Agenda

● Overview of the HPC I/O Stack

● Darshan and DXT

● The Missing Dots...

● Interactive Exploration & Optimization

● The DXT Explorer Tool

● DXT Explorer in Practice

● Conclusion

2

Overview of the HPC I/O Stack

● HPC I/O stack is complex (multiple layers)

● Interplay of factors can affect I/O performance

● Various optimizations techniques available

● Plethora of tunable parameters

● Each layer brings a new set of parameters

● Using the all layers efficiently is a tricky problem

Parallel / Serial Applications

High-Level I/O Libraries

POSIX I-O

VFS, FUSE
MPI-IO

I/O Forwarding Layer

Parallel File System

Storage Devices

HDF5, NetCDF, ADIOS

OpenMPI, MPICH
 (ROMIO)

IBM CIOD, Cray DVS, IOFSL, IOF

Lustre, GPFS, PVFS2, OrangeFS

HDD, SSD, RAID

3

Darshan and DXT

● Darshan is a popular tool to collect I/O profiling

● It aggregates information to provide insights

● Extended tracing mode (DXT)

● Provide a fine grain view of the application behavior

● Interface (POSIX or MPI-IO), operation (read/write)

● Rank, segment, offset, request size

● Start and end timestamp

● How to visualize and extract insights DXT data?

● Identify I/O bottlenecks

● Optimize the application

4

The Missing Dots...

● Lack of knowledge of available tunable options

● Little guidance on when to use them

● In Cori (NERSC) Darshan logs from January 2019 report:

● 94% of the files used the default 1MB stripe size

● 36% of the files are striped over a single storage server

● Collective buffering and data sieving (>20 years ago)

● Aggregators, placement, and matching to the concurrency at the PFS

● Between a performance bottleneck and its tuning solution, there remain dots to be connected...

I/O
Problems

Applying
I/O Tuning

Trace
Collection

if problem persists

?

5

Interactive Optimization Approach

● Lack of knowledge of available tunable options

● Little guidance on when to use them

● In Cori (NERSC) Darshan logs from January 2019 report:

● 94% of the files used the default 1MB stripe size

● 36% of the files are striped over a single storage server

● Collective buffering and data sieving (>20 years ago)

● Aggregators, placement, and matching to the concurrency at the PFS

● Between a performance bottleneck and its tuning solution, there remain dots to be connected...

I/O
Problems

Applying
I/O Tuning

Interactive
Exploration

Trace
Analysis

Mapping to
Solutions

Trace
Collection

if problem persists

6

The DXT Explorer Tool

● Darshan can collect fine grain traces with DXT

● No tool to visualize and explore yet

● Static plots have limitations

● Features we seek:

● Observe POSIX and MPI-IO together

● Zoom-in/zoom-out in time and subset of ranks

● Contextual information about I/O calls

● Focus on operation, size, or spatiality

● By visualizing the application behavior, we are one step closer to optimize the application

● There is still a lack of translation from I/O bottlenecks to optimizations

github.com/hpc-io/dxt-explorer

7

docker pull hpcio/dxt-explorer

DXT Explorer
Interactive Features

Explore the timeline by zooming in and out and observing how the MPI-IO calls are translated
to the POSIX layer. For instance, you can use this feature to detect stragglers.

8

DXT Explorer
Interactive Features

Visualize relevant information in the context of each I/O call (rank, operation, duration, request
size, and OSTs if Lustre) by hovering over a given operation.

9

DXT Explorer
Interactive Features

Explore the operations by size in POSIX and MPI-IO. You can, for instance, identify small or
metadata operations from this visualization.

10

DXT Explorer
Interactive Features

Explore the spatiality of accesses in file by each rank with contextual information.

11

DXT Explorer in Practice

● Summit (Oak Ridge) and Cori (NERSC) supercomputers

● Four application kernels, best of five repetitions

12

I/O Kernel Context
Summit (OLCF) Cori (NERSC)

Baseline (s) Optimized (s) Baseline (s) Optimized (s)

OpenPMD Particle and mesh based data 110.6 54.8

E2E benchmarks Domain decomposition 15.9 80.0

Block-cyclic I/O Linear algebra - > 8h

FLASH-IO Astrophysics 1495.0 -

OpenPMD
Baseline

● Summit with 64 compute nodes, 6 ranks per node, and a total of 384 MPI ranks

● Mesh size is [65536 ⨉ 256 ⨉ 256], 10 iterations, total file size is ≈121GB

13

DATA DATA
METAMETA

DATA
META

OpenPMD
Optimized

● Collective I/O using ROMIO hints with 1 agg/node and 16 MB collective buffer size provides 1.54x speedup

● GPFS large block I/O with HDF5 collective metadata gives additional 3.8x speedup

● Collective HDF5 metadata were not actually collective due to an issue introduced in HDF5 1.10.5

● With HDF5 1.10.4 combined with previous optimizations gives a total of 6.8x speedup from baseline

14

110.6s

BASELINE

16.1s

OPTIMIZED

6.8x

OpenPMD
Optimized

● Cori with 64 compute nodes, 16 ranks per node, and a total of 1024 MPI ranks

● Mesh size is [65536 × 256 × 256], 10 iterations, total file size is ≈320GB

● Collective HDF5 metadata were not actually collective due to an issue introduced in HDF5 1.10.5

●

15

54.8s

BASELINE

30.8s

OPTIMIZED

43.8%

E2E Benchmarks
Baseline

● Cori with 64 compute nodes, 6 ranks per node, and a total of 1024 MPI ranks

● 1024 processes arranged in a 32 x 32 x 16 distribution, total file size is ≈41GB

● 44% of the time is taken by rank 0!

Rank 0 is sequentially writing fill values
to all of the defined variables (10 in this

workload), issuing over 40 thousand
write requests with of ≈1MB

16

E2E Benchmarks
Optimized

● Cori with 64 compute nodes, 6 ranks per node, and a total of 1024 MPI ranks

● 1024 processes arranged in a 32 x 32 x 16 distribution, total file size is ≈41GB

● 44% of the time is taken by rank 0!

● Disabling the data filling (NC_NOFILL in NetCDF) translates to 7.3x speedup

17

80s

BASELINE

8s

OPTIMIZED

10x

Block-cyclic I/O
Baseline

● Cori with 32 compute nodes, 32 ranks per node, and a total of 1024 MPI ranks

● Square matrix with 81250 x 81250 with FP64 data, total of ≈50GB

● Block-cyclic data structures with 128 x 128 with 1024 processes arranged in a 32 x 32 process grid

● Lustre striping, MPI-IO collective buffering, and HDF5 alignment optimizations

18

969s 8h

BASELINE

5s

OPTIMIZED

193x

709s

BASELINE

17s

OPTIMIZED

41xREAD WRITE

FLASH
Baseline

● Summit with 64 compute nodes, 6 ranks per node, and a total of 384 MPI ranks

● 2 checkpoint files (≈2.3TB each) and 2 plot file (≈14GB each) both using HDF5 backend

● MPI not issuing collective I/O operations

Looking at the MPI-IO and POSIX levels,
each rank is writing its own data

19

FLASH
Optimized

● Collective I/O using ROMIO hints with 1 agg/node and 16 MB collective buffer size provides 3.2x speedup

● Setting the HDF5 alignment size to 16 MB provides an additional 1.18x speedup

● Deferring the HDF5 metadata flush provides another 1.1x speedup

1495s

BASELINE

361s

OPTIMIZED

4.1x

20

Conclusion

● We targeted the gaps between data collection and tuning

● Seek to identifying bottlenecks and re-shape the I/O behavior

● DXT Explorer tool to interactively visualize the I/O behavior

● Case study with four application kernels in two supercomputers

I/O Kernel Context
Summit (OLCF) Cori (NERSC)

Baseline (s) Optimized (s) Baseline (s) Optimized (s)

OpenPMD Particle and mesh based data 110.6 16.1 54.8 30.8

E2E benchmarks Domain decomposition 15.9 1.9 80.0 5.0

Block-cyclic I/O Linear algebra - - > 8h 22.0

FLASH-IO Astrophysics 1495.0 361.0 - -

21

I/O
Problems

Applying
I/O Tuning

Interactive
Exploration

Trace
Analysis

Mapping to
Solutions

Trace
Collection

if problem persists

Conclusion

● DXT Explorer

● Adds an interactive component to Darshan DXT trace analysis

● Moves a step closer towards connecting the dots between bottleneck detection and tuning

● There is still the need for further R&D

● Tools to better report findings to end-users

● Automatically mapping performance problems to tuning options, e.g. recommendations

github.com/hpc-io/dxt-explorer

jeanbez.gitlab.io/pdsw-2021 (Companion Repository)

docker pull hpcio/dxt-explorer

22

You can reach us by email:

jlbez@lbl.gov

github.com/hpc-io/dxt-explorer

jeanbez.gitlab.io/pdsw-2021 (Companion Repository)

docker pull hpcio/dxt-explorer

23

