
Why Memory Is Your Next Bottleneck
And How To Overcome It

Marcos K. Aguilera
Principal Researcher

VMware Research Group

Cloud bottlenecks

What blocks you from
using rest of the cloud effectively

The memory problem

Need is growing
Capacity is limited
Upgrade is hard
Cost is growing

The memory problem

Need is growing
Capacity is limited
Upgrade is hard
Cost is growing

The memory problem

Need is growing
Capacity is limited
Upgrade is hard
Cost is growing

Big Data moving to memory
Many memory-hungry use cases

Hardware changes
Cores per CPU getting to hundreds

The memory problem

Need is growing
Capacity is limited
Upgrade is hard
Cost is growing

The memory problem

Need is growing
Capacity is limited
Upgrade is hard
Cost is growing

DIMM
capacity

16 GB 32
GB

64 GB 128
GB

256 GB

$/GB 6.50 5.50 5.00 8.00 13.50

The memory problem

Need is growing
Capacity is limited
Upgrade is hard
Cost is growing

Conjunctural reasons
New memory-hungry uses

Structural reasons
Industry organization

Hardware to the rescue

• New memory technologies

• High-bandwidth memory

• New memory interconnects

• Memory disaggregation

Hardware to the rescue

• New memory technologies

• High-bandwidth memory

• New memory interconnects

• Memory disaggregation

Hardware to the rescue

3D Xpoint, MRAM, FeRAM

• New memory technologies

• High-bandwidth memory

• New memory interconnects

• Memory disaggregation

Hardware to the rescue

Processing
(GPU,CPU,etc) Memory

Processing
(GPU,CPU,etc) Memory

bottleneck

• New memory technologies

• High-bandwidth memory

• New memory interconnects

• Memory disaggregation

Hardware to the rescue

Compute Express Link (CXL)
Extra memory
Extra bandwidth

• New memory technologies

• High-bandwidth memory

• New memory interconnects

• Memory disaggregation

Hardware to the rescue

Host

Host

Host

Host

Host

Host

Memory
Pool

Inter-
connect

Systems research to the rescue

Two high-level ideas

•Memory Tiering •Memory Pooling

App
TIER1
MEM

App

TIER1
MEM

TIER2
MEM TIER2

MEM

TIER1
DRAM

TIER2
Cheaper,
bigger
type of
memory

App App

POOL
MEM

POOL
MEM

POOL
MEM

Two high-level ideas

•Memory Tiering •Memory Pooling

App
TIER1
MEM

App

TIER1
MEM

TIER2
MEM TIER2

MEM

TIER1
DRAM

TIER2
Cheaper,
bigger
type of
memory

App App

POOL
MEM

POOL
MEM

POOL
MEM

Tiering and Pooling

App

DRAM

App

DRAM

POOL
MEM

POOL
MEM

DRAM
MEM

MID-DENSITY
MEM

HIGH-DENSITY
MEM

Work in this space
• System-level Implications of Disaggregated Memory.

Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung, Jichuan Chang,
Parthasarathy Ranganathan, Thomas F. Wenisch.
HPCA 2012

• Network Requirements for Resource Disaggregation.
Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han,
Rachit Agarwal, Sylvia Ratnasamy, Scott Shenker.
OSDI 2016

• Remote Memory in the Age of Fast Networks.
Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi,
Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian,
Michael Wei.
SoCC 2017

• Thermostat: Application-transparent page management for two-tiered main
memory.
Neha Agarwal ,Thomas F. Wenisch
ASPLOS 2017

• Efficient Memory Disaggregation with Infiniswap.
Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, Kang Shin
NSDI 2017

LegoOS: A Disseminated, Distributed OS for Hardware Resource
Disaggregation.
Yizhou Shan, Yutong Huang, Yilun Chen, Yiying Zhang.
OSDI 2018

Remote Regions: a Simple Abstraction for Remote Memory.
Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi, Stanko
Novakovic, Arun Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh
Venkatasubramanian, Michael Wei.
ATC 2018

Software-Defined Far Memory in Warehouse-Scale Computers.
Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal, Radoslaw Burny,
Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid, Greg Thelen,
Kamil Adam Yurtsever, Yu Zhao, Parthasarathy Ranganathan
ASPLOS 2019

Can far memory improve job throughput?
Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ousterhout, Marcos K.
Aguilera, Aurojit Panda, Sylvia Ratnasamy, Scott Shenker.
EuroSys 2020

AIFM: High-Performance, Application-Integrated Far Memory.
Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, Adam Belay.
OSDI 2020

Memory Tiering

•What Tiers to Use
• How Tiers are Exposed

Memory Tiering: What Tiers to Use

Type: Physical vs Functional
Cost: $3 to $17/GB
Latency: 100ns to 4us
BW: 10s to 100s GBps
Access: Mapped, Paged, Custom

Memory Tiering: What Tiers to Use

Example 1 App

DRAM

App

DRAM

PMEM
PMEM

DIMM
capacity

16 GB 32 GB 64 GB 128 GB 256 GB 512 GB

RAM $/GB 6.50 5.50 5.00 8.00 13.50 —

PMEM $/GB — — — 4.50 7.50 16.50

Memory Tiering: What Tiers to Use

App

DRAM

App

DRAM

POOL
MEM

POOL
MEM

PMEM

Example 2

Memory Tiering: What Tiers to Use

App

DRAM

App

DRAM

POOL
MEM

POOL
MEM

NVMe
SSD

DIMM capacity 16 GB 32 GB 64 GB 128 GB 256 GB

$/GB 6.50 5.50 5.00 8.00 13.50

SSD capacity 375 GB 750 GB 1.5 TB

$/GB 3.30 3.60 3.80

Example 3

Memory Tiering: How Tiers are Exposed

VM

DRAM

VM

DRAM

VM
TIER1
MEM

VM

TIER1
MEM

TIER2
MEM TIER2

MEM

Logical View Physical View
Proc

DRAM

Proc

DRAM

Proc
TIER1
MEM

Proc

TIER1
MEM

TIER2
MEM TIER2

MEM

Logical View Physical View
Proc
TIER1
MEM

Proc

TIER1
MEM

TIER2
MEM TIER2

MEM

Logical View

Hypervisor handles tiering
Transparent to OS and

process

OS handles tiering
Transparent to process

Process handles tiering
è new app interfaces

Remote Regions
AIFM

Memory Tiering: How Tiers are Exposed

VM

DRAM

VM

DRAM

VM
TIER1
MEM

VM

TIER1
MEM

TIER2
MEM TIER2

MEM

Logical View Physical View
Proc

DRAM

Proc

DRAM

Proc
TIER1
MEM

Proc

TIER1
MEM

TIER2
MEM TIER2

MEM

Logical View Physical View
Proc
TIER1
MEM

Proc

TIER1
MEM

TIER2
MEM TIER2

MEM

Logical View

Hypervisor handles tiering
Transparent to OS and

process

OS handles tiering
Transparent to process

Process handles tiering
è new app interfaces

Remote Regions
AIFM

LATER IN TALK

LATER IN TALK

Memory Pooling: Interconnect

App App

POOL
MEM

POOL
MEM

POOL
MEM

???

Choices
RDMA
Gen-Z

CXL 2.0

Memory Pooling: The Pool

App App

POOL
MEM

POOL
MEM

POOL
MEM

???
Choices

Another host
Memory server

JBOM

Fastswap EUROSYS’20

Proc

DRAM

Proc

DRAM

POOL
MEM

POOL
MEM DRAM

RDMA

Proc

DRAM

Proc

DRAM

Logical View Physical View
Transparent tiering with OS paging
Traditional paging slow for RDMA

1. Head-of-line blocking
2. Asynchronous page reads
3. Reclamation during faults

Fastswap

Proc

DRAM

Proc

DRAM

POOL
MEM

POOL
MEM DRAM

RDMA

Proc

DRAM

Proc

DRAM

Logical View Physical View
Transparent tiering with OS paging
Traditional paging slow for RDMA

1. Head-of-line blocking
2. Asynchronous page reads
3. Reclamation during faults

Optimize paging in Linux
1. Multiple RDMA queues
2. Frontswap for sync faults
3. Dedicated core to reclaim

New App Interfaces for Tiering

•Expose tiering to apps
•Aimed at new apps
•What should they see?

Remote Regions Interface ATC’18

App

DRAM

App

DRAM

POOL
MEM

POOL
MEM DRAM

RDMA

Better interface to access memory over RDMA
RDMA too hard to use
Introduce new interface to replace RDMA

1. Everything is a file
2. RegionFS

fd=open("/regions/ez", O_RDWR);
…
ptr=rmalloc(fd, 1024)
sprintf(ptr, "hello world");

Application Integrated Far Memory OSDI’20

App

DRAM

App

DRAM

POOL
MEM

POOL
MEM DRAM

Ethernet

Move tier gating to app library
Page faults are too slow
Remoteable pointers
Dereference scopes
Pauseless memory evacuator

64B object 4KB object
OS Paging 582K 582K

AIFM 3975K 1059K

Throughput (accesses/s)

Key ideas in AIFM

Remoteable Pointer

RemUniquePtr<T> rptr;
T* ptr;
...
ptr = rptr.deref();

Dereference Scope

{
DerefScope scope;
ptr = rptr.deref(scope);
... use ptr ...

}
// ptr now invalid

Pauseless mem evac

When local memory is low
And object out of scope
Pick object to swap out

Conclusion

• Memory is becoming major pain in data centers
• Solution is tiering and pooling
• Tiering leverages cheaper bigger memory types
• Pooling disaggregates memory
• Transparent approaches have a cost
• Better performance if willing to change apps

