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Cloud bottlenecks

What blocks you from
using rest of the cloud effectively



The memory problem

Need is growing
Capacity is limited
Upgrade is hard
Cost     is growing
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Big Data moving to memory
Many memory-hungry use cases

Hardware changes
Cores per CPU getting to hundreds
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DIMM 
capacity

16 GB 32 
GB

64 GB 128 
GB

256 GB

$/GB 6.50 5.50 5.00 8.00 13.50



The memory problem

Need is growing
Capacity is limited
Upgrade is hard
Cost     is growing

Conjunctural reasons
New memory-hungry uses

Structural reasons
Industry organization



Hardware to the rescue



• New memory technologies

• High-bandwidth memory

• New memory interconnects

• Memory disaggregation
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3D Xpoint, MRAM, FeRAM
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• New memory technologies

• High-bandwidth memory

• New memory interconnects

• Memory disaggregation

Hardware to the rescue

Compute Express Link (CXL)
Extra memory
Extra bandwidth



• New memory technologies

• High-bandwidth memory

• New memory interconnects

• Memory disaggregation

Hardware to the rescue
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Systems research to the rescue



Two high-level ideas

•Memory Tiering •Memory Pooling

App
TIER1 
MEM

App

TIER1 
MEM

TIER2
MEM TIER2

MEM

TIER1
DRAM

TIER2
Cheaper, 
bigger 
type of 
memory

App App

POOL
MEM

POOL
MEM

POOL
MEM



Two high-level ideas

•Memory Tiering •Memory Pooling

App
TIER1 
MEM

App

TIER1 
MEM

TIER2
MEM TIER2

MEM

TIER1
DRAM

TIER2
Cheaper, 
bigger 
type of 
memory

App App

POOL
MEM

POOL
MEM

POOL
MEM



Tiering and Pooling
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Memory Tiering

•What Tiers to Use
• How Tiers are Exposed



Memory Tiering:  What Tiers to Use

Type: Physical vs Functional
Cost: $3 to $17/GB
Latency: 100ns to 4us
BW: 10s to 100s GBps
Access: Mapped, Paged, Custom



Memory Tiering:  What Tiers to Use

Example 1 App

DRAM

App

DRAM

PMEM
PMEM

DIMM 
capacity

16 GB 32 GB 64 GB 128 GB 256 GB 512 GB

RAM $/GB 6.50 5.50 5.00 8.00 13.50 —

PMEM $/GB — — — 4.50 7.50 16.50



Memory Tiering:  What Tiers to Use
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Memory Tiering:  What Tiers to Use

App

DRAM

App
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MEM

POOL
MEM

NVMe
SSD

DIMM capacity 16 GB 32 GB 64 GB 128 GB 256 GB

$/GB 6.50 5.50 5.00 8.00 13.50

SSD capacity 375 GB 750 GB 1.5 TB

$/GB 3.30 3.60 3.80

Example 3



Memory Tiering: How Tiers are Exposed
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Memory Pooling: Interconnect

App App
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Gen-Z

CXL 2.0



Memory Pooling:  The Pool

App App

POOL
MEM
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???
Choices

Another host
Memory server

JBOM



Fastswap EUROSYS’20
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Transparent tiering with OS paging
Traditional paging slow for RDMA

1. Head-of-line blocking
2. Asynchronous page reads
3. Reclamation during faults



Fastswap

Proc

DRAM
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DRAM
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MEM
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Proc

DRAM

Proc

DRAM

Logical View Physical View
Transparent tiering with OS paging
Traditional paging slow for RDMA

1. Head-of-line blocking
2. Asynchronous page reads
3. Reclamation during faults

Optimize paging in Linux
1. Multiple RDMA queues
2. Frontswap for sync faults
3. Dedicated core to reclaim



New App Interfaces for Tiering

•Expose tiering to apps
•Aimed at new apps
•What should they see? 



Remote Regions Interface ATC’18

App

DRAM

App

DRAM

POOL
MEM

POOL
MEM DRAM

RDMA

Better interface to access memory over RDMA
RDMA too hard to use
Introduce new interface to replace RDMA

1. Everything is a file
2. RegionFS

fd=open("/regions/ez", O_RDWR);
…
ptr=rmalloc(fd, 1024)
sprintf(ptr, "hello world");



Application Integrated Far Memory OSDI’20

App

DRAM

App

DRAM

POOL
MEM

POOL
MEM DRAM

Ethernet

Move tier gating to app library 
Page faults are too slow
Remoteable pointers
Dereference scopes
Pauseless memory evacuator

64B object 4KB object
OS Paging 582K 582K

AIFM 3975K 1059K

Throughput (accesses/s)



Key ideas in AIFM

Remoteable Pointer

RemUniquePtr<T> rptr;
T* ptr;
...
ptr = rptr.deref();

Dereference Scope

{
DerefScope scope;
ptr = rptr.deref(scope);
... use ptr ...

}
// ptr now invalid

Pauseless mem evac

When local memory is low
And object out of scope
Pick object to swap out



Conclusion

• Memory is becoming major pain in data centers
• Solution is tiering and pooling
• Tiering leverages cheaper bigger memory types
• Pooling disaggregates memory
• Transparent approaches have a cost
• Better performance if willing to change apps


