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Abstract—The paper addresses the following question: Are
IO operations of HPC applications properly synchronized? We
focus on parallel file systems that satisfy POSIX semantics.
The outcome of I/O operations is well-defined provided that
conflicting accesses to a file location are not concurrent, but
are ordered. Accesses to distinct processes are ordered by the
executed MPI communication. We derive the “happens-before”
relation between I/O calls of HPC runs by analyzing traces
collected during program execution. Various optimizations reduce
the analysis overhead. We collected traces from 17 representative
HPC applications. We found that 10 of them do not perform
conflicting I/O accesses and, hence, are properly synchronized
by default. The remaining 7 applications properly synchronize
the conflicting I/O accesses.

I. INTRODUCTION

Most HPC applications use POSIX compliant Parallel File
Systems (PFS), such as Lustre [1] or GPFS [2]. These are
either accessed directly by the application, using POSIX I/O
calls, or are accessed indirectly, through parallel I/O libraries.
POSIX semantics require that the value returned by a read
to a file location is the value written to that location by the
last preceding write [3]. However, reads and writes are not
required to be atomic: a read that is concurrent with a write
executed by another process could return part of the written
values [4]. (On the other hand, reads and writes executed by
distinct threads of the same process are not interleaved [5].)

The lack of atomicity is a reasonable choice: It avoids the
need for locks that could hamper performance for long reads or
writes; and an application pattern where the programmer does
not care in what order two conflicting file accesses execute is
unlikely in HPC applications. Lack of proper synchronization
is most likely a bug in the application or I/O library. Thus,
we expect that HPC I/O is race-free – i.e., that conflicting I/O
operations are not concurrent.

We hypothesize that the I/O code of HPC applications is
race-free. The main motivation for our work is to verify this
hypothesis. This would enable various optimizations in the
design of PFS’s – similar to the advantages of data race-
free codes for which sequential consistency can be efficiently
enforced on weakly consistent hardware [6]. In our previous
work on the Recorder tool [7] we assumed that the global wall-
clock order of conflicting file accesses matched the happens-
before order; the former is much easier to capture than the
later. The assumption holds for race-free code. The results of
the current paper validate our assumption.

In a distributed system the happens-before relation is a
partial order that is determined by inter-process synchronizing
communications. In HPC, these communications use MPI. For
example, if a call to MPI_Send() on one process is matched
by a call to MPI_Receive() on another process, then the
start of the send call happens before the completion of the
receive call; in a collective call to MPI_Reduce(), the start
of the call at any participating process happens before the
completion of the call at the root. If the processes of an MPI
program communicate only using MPI, then happens-before
(aka causality) order of the execution is the transitive closure
of the order imposed by the semantics of MPI communication
operations and the program order within each process; two
I/O operations are synchronized if they are ordered by this
happen-before order.

We designed a tool to check whether HPC applications
are “I/O race-free” and used it to study representative HPC
applications. We describe in the following section the overall
design of our tool. This is followed by a section discussing
the implementation of the tool. in Section IV by a description
of our findings for 17 representative HPC applications and a
discussion of the tool’s performance. Related work is discussed
in Section V, followed by a conclusion in Section VI.

II. DESIGN

The analysis of I/O synchronization consists of the follow-
ing phases:

1) Trace records are created for all I/O and MPI calls.
2) An offline analysis of the trace records generates a graph

representing all executed MPI and I/O calls and the
happens-before relation between them. Another offline
analysis identifies conflicting I/O operations.

3) The results of the two analyses are combined to check
whether conflicting I/O operations are properly ordered.

A. Tracing

We use a trace-driven analysis approach, rather than on-the-
fly causality analysis since the same traces are also used to
identify conflicting I/O calls, and for other types of analyses.
We use the Recorder tracing tool [7] to collect traces from
applications. Recorder stores a record for every MPI call and
for every I/O operation during an application run, including
I/O operations from MPI-IO, HDF5 and POSIX. The records
contain the values of all of the parameters supplied to those
operations, e.g., for I/O, file name, offset, and flags. Trace



files are numbered according to the rank of the corresponding
process in MPI_COMM_WORLD. Each record can be uniquely
identified by the file containing the record, and by the sequence
number of the record.

B. Trace Analysis

1) The Happens-Before Order: The semantics of MPI im-
poses some order between related communication operations.
Their main cases are listed below.

a) Blocking point-to-point communications: This simple
case is illustrated in Figure 1a: If a send matches a receive,
then the send starts before the receive returns. To identify this
order, we need to properly match send and receive records.

b) Nonblocking communications: The case of a non-
blocking communication, illustrated in Figure 1b is slightly
more complex: If a nonblocking send matched a nonblocking
receive, and the receive is completed by a wait (or test) call,
then the send starts before the wait returns. To identify this
order, we need to properly match isend to irecv and irecv to
wait.

c) Rooted collective communications: Figure 1c illus-
trates a broadcast operation, where the root is the sender. No
caller in the involved group can return from the collective call
before the root entered the call. Figure 1d illustrates the reverse
case of a reduce operation, where the root is the receiver. The
root cannot return from the call before the every process in
the involved group entered the call.

d) Unrooted collective communication: The final case,
illustrated in Figure 1e, is that of a symmetric collective
communication, such as barrier: No process in the involved
group can exit the call before every process in the group has
entered it.

2) Computing the Happens-Before Relation: The happens-
before order among MPI and I/O calls is described by a
Directed Acyclic Graph (DAG): The nodes correspond to trace
records and the edges corresponds to happens-before relations.
An edge from record a to record b indicates that a started
before b completed. We assume that each MPI process is
single-threaded, so that records in the same trace file are totally
ordered. In addition, MPI communications order records from
different files. The complete happens-before relation will be
obtained by computing the transitive closure of this DAG.

Typically, the number of pairs of conflicting I/O operations
is much smaller than the number of MPI operations. Also,
typically, the number of edges in the DAG is linear in the
number of records, while the number of edges in the transitive
closure graph is quadratic in the number of records. Therefore,
rather than computing the transitive closure of the DAG, we
shall query, for each conflicting pair of I/O operations, whether
the DAG contains a directed path leading from one to the other.

We shall focus now on the construction of the happens-
before DAG. The algorithm handles the four “happens-before”
patterns discussed in the previous section; it also takes into
account the semantics of MPI and, in particular, the ordering
constraints: point-to-point messages are matched in order and
collective operations are invoked in order.

(a) Blocking point-to-point

(b) Nonblocking point-to-point

(c) Broadcast

(d) Reduce

(e) Barrier

Fig. 1: Order imposed by MPI

Consider first the simple case of blocking sends and re-
ceives. We match sends to receives by traversing each file of
records in order: The first unmatched record of a send in the
file of process A with a destination of B will be paired with
the first unmatched record of a receive in the file of process B
with a source of A and the same tag. An edge connecting the
send record to the receiver record will be inserted. Because of
the MPI ordering constraints, this pairing process will match
correctly sends to receives.

Receives that use MPI_ANY_SOURCE do not provide an
input source argument that can be used to match with the
appropriate sender. Consider the communication pattern illus-



MPI_Send(…,1,…)

Rank 0

MPI_Recv(…,*,…)

Rank 1

MPI_Recv(…,*,…)

Rank 2

MPI_Send(…,1,…)

Fig. 2: Nondeterministic code using wildcard receives

trated in Figure 2: Without the source value, it is not possible
to know which receive matched which send, as this depends
on the order of arrival of the sent messages. However, the
sender rank can be retrieved from the status output argument
of the receive call. The Recorder tracing tool captures the value
of this argument. Thus, for non deterministic MPI code, our
tool recreates the particular ordering in which communications
occurred.

In order to handle nonblocking receives we need to match
the record of the MPI_Irecv call with the subsequent record
of the MPI_Wait or MPI_Test call that completed the
receive operation. This will be the first wait or the first
successful test that uses the same request as the receive call.
An edge will be inserted that connects the record of the
send call to the record of that wait or test call. One slight
complication is that, if the nonblocking receive call uses a
wildcard source argument, then the actual source value will
be found in the record of the matching wait or test operation.

The handling of collective operations is similar: The first
unmatched record for a collective call will be paired with
the first unmatched record for the same call at all the other
ranks involved in the call. For rooted collectives, an edge will
connect the record of the root call to all the other records, or
vice versa. For unrooted blocking collective calls, we need to
logically separate the start of the call and the end of the call,
and insert an edge from each start to each end. Rather than
creating n2 edges, we create 2n edges by inserting a node that
represents the collective call.

MPI communication operations have a communicator ar-
gument and MPI ranks are relative to the group of this
communicator. In order to properly pair sends to receives, or
all matching invocations of a collective function, we need to
keep track of the communicator groups and the match between
absolute ranks (i.e., the rank in MPI_COMM_WORLD) and
relative ranks for the communicators created during program
execution. The can be done during the offline processing
of the records for communicator creating calls, since these
records store all the values of all the arguments passed to the
communicator constructor.

C. Examine conflicts

We used an algorithm from our prior work [8] to detect
conflicting I/O operations and then check for synchronizations.
The post-mortem analysis tools offered by Recorder can
answer questions such as whether an application performs
conflicting updates to the same file location. We define the
following cases as potential conflicts:

• RW-[S|D]: read conflicting with a write by the same
process (S) or by different (D) processes.

• WW-[S|D]: write conflicting with another write by the
same process (S) or by different (D) processes.

III. IMPLEMENTATION

In this section, we provide more details on the Python code
used to implement the tool. Once the application traces are
generated using Recorder, our program reads each trace file
to extract various I/O operations executed by the application.
Each extracted record contains (rank, index, call, src, dst, stag,
rtag, comm, tindx, req, reqflag) where rank is used to identify
the MPI process, index is the order in which the call appeared
in the application, src and stag are the rank and the tag of the
process who made the call respectively, while dst and rtag are
the rank and the tag of the receiving process respectively, call
indicates the MPI routine, and comm is the MPI communicator
the call belongs to. req, tindx are parameters related to non-
blocking calls referring to the request, and index of the
completed requests in array of requests for MPI_Waitall,
MPI_Waitsome, etc.

In addition, three auxiliary arrays are used specifically for
the following three types of MPI calls: collective calls, point-
to-point receive calls, and wait or test calls. They are used to
accelerate searching during the matching process.

• recv calls: Contains indices of point-to-point receive
calls like MPI_Irecv, MPI_Recv, etc. When match-
ing a point-to-point send call, one iterates this array
instead of all trace records. Upon a successful match,
the call will be deleted from this array.

• coll calls: Contains all collective calls, including
MPI_Barrier, MPI_Alltoall, etc. Collective
calls are matched in order and only two fields are
required to match: communicator and function name.
Thus, we use a hash table to store them wherein each
entry, the key is its communicator and the value is its
index. As a result, a collective call can be matched in
O(1) time for each rank.

• wait test calls: This array contains indices of all
MPI_Waitxxx/MPI_Testxxx calls. When a non-
blocking receive call is being matched, an edge is created
between the send call and the wait/test call that completes
the receive’s request, as shown in Figure 1(b). Conse-
quently, this request will be removed from the completed
request list of the corresponding wait/test call.

We traverse each array to find a match for each type
of MPI routine as described in Section II-B. Code for
matching point-to-point calls and collective calls is shown
in Listing 1. get_global_rank() translates a rank
in any communicator to the rank in MPI_COMM_WORLD.
find_wait_test_call() finds fist wait/test call that
completes the request from a non-blocking call, with the help
of wait test calls array.

Each matching pair resulting from this algorithm is es-
sentially the head and tail of an edge that represents the
“happens-before” order. For example, in a Send-Recv pair,



Listing 1 Algorithm to find matching pairs
def match_pt2pt(send_call)

head, tail = [send_call], []
dst = get_global_rank(send_call.comm, \

send_call.dst, comm_table);

for each idx in recv_calls[dst]:
recv_call = all_calls[dst][idx];
if (not same tag) or (not same comm) \

or (not same src):
continue;

recv_calls[dst].remove(idx);
if recv_call.is_blocking_call():

add_edge(head, tail, recv_call);
break

else:
wt = find_wait_test_call(req);
add_edge(head, tail, wt);
break

def match_coll(coll_call):
head, tail = [], []
key = coll_call.get_key();
for each rank:

idx = coll_calls[key][0];
mycall = all_calls[idx];
coll_calls[key].remove(idx);

if (mycall.is_blocking_call()):
add_edge(head, tail, mycall);

if(coll_calls[key].empty())
coll_calls.remove(key);

else:
wt = find_wait_test_call(mycall.req);
add_edge(head, tail, wt);

an edge between two nodes MPI_Send → MPI_Recv is
added to the graph. Once the graph is generated, we use
the procedure described in Section II-C to identify potentially
conflicting pairs of of POSIX I/O calls. Nodes for these calls
are subsequently added to the “happens-before” DAG. Finally,
for each such pair, if there exists a path from one node to
the other, then they are properly synchronized. We use the
networkx network analysis library [9] to perform this test.

IV. RESULTS

We use the same set of traces collected from our previous
work [8]. Those traces were collected from 17 HPC applica-
tions and I/O benchmarks that span a wide variety of domains.
Among the 17 applications, 7 exhibited potential conflicting
I/O accesses. We run our analysis tool on the traces from
these 7 applications. All the experiments were performed on an
Intel x86 64 architecture machine with 4 Intel(R) Core(TM)
i5-5300U processors and 8GB main memory running Ubuntu
21.04 operating system and Python version 2.7.18.

A. Are conflicting accesses properly synchronized?

From the results reported in Table I it can be confirmed that
our assumption: all conflicting accesses are indeed properly
synchronized is true. Note that 7 applications performed
conflicting I/O accesses, and only one (FLASH) among them
involved conflicting accesses from distinct processes.

TABLE I: Potential conflicting accesses and whether they
are properly synchronized. ‘S’ indicates conflicting operations
called by the same process; ‘D’ indicates that the conflict
involves multiple processes.

Application I/O Library WW RW Properly
S D S D Synchronized

FLASH HDF5 ! ! !

ENZO HDF5 ! !

NWChem POSIX ! ! !

pF3D-IO POSIX ! !

MACSio Silo ! !

GAMESS POSIX ! !

LAMMPS ADIOS ! !

LAMMPS NetCDF ! !
LAMMPS HDF5
LAMMPS MPI-IO
LAMMPS POSIX
MILC-QCD POSIX
ParaDiS HDF5
ParaDiS POSIX
VASP POSIX
LBANN POSIX
QMCPACK HDF5
Nek5000 POSIX
GTC POSIX
Chombo HDF5
HACC-IO MPI-IO
HACC-IO POSIX
VPIC-IO HDF5

B. Performance

This section discusses how our tool performed against
different applications with varying trace sizes. Table II lists
the number of recorded calls and the numbers of nodes and
edges in the computed DAG for three applications, with a
varying number of MPI ranks. The number of recorded calls
increases linearly with the number of ranks (weak scaling) and
the number of nodes and edges is roughly proportional to the
number of calls: Our DAG representation is efficient.

We show in Figure 3 the time required to compute the
happens-before DAG for three applications, as a function of
the number of MPI ranks (red line) and the total number of
MPI calls captured by Recorder for each run (blue line). Our
algorithm’s execution time increases linearly as the number
of MPI ranks, which is expected as the matching time is
proportional to the number of MPI calls. Lastly, querying
the DAG to verify synchronization only takes on average a
millisecond per conflicting pair.

V. RELATED WORK

Given the fundamental importance of parallel computing to
science and engineering research, application performance and
correctness is paramount. MPI is widely used in HPC appli-
cations scaling to thousands of cores. Some of the previous
works like Paraver [10] offer fine-grained performance metrics
and visualizations, but their accurate interpretation requires a
substantial time and effort from highly-skilled analysts. The
concept of the detection of causal execution flows for cause-
effect inference has been recently studied in an automated



TABLE II: Size of of the generated “happens-before” DAG

Ranks GAMESS FLASH MACSio
Calls Nodes Edges Calls Nodes Edges Calls Nodes Edges

4 1657 1596 2530 4626 2760 4048 232 140 172
16 52590 7146 13900 17770 11188 17586 960 592 772
64 301776 201420 317346 70138 44692 71394 3936 2464 3268
256 987784 982700 1537548 279610 178708 286626 15840 9952 13252
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(a) GAMESS - a quantum chemistry application
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(b) FLASH - a multi-physics simulation code
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(c) MACSio - an Ale3D proxy application

Fig. 3: Performance evaluation for 3 HPC applications

problem diagnosis thesis [11]. Online causality analysis [12]
focus on runtime discovery of causal execution flows, made
up of communication and computational activities in message-
passing parallel programs. For example, Large Scale Verifica-
tion of MPI Programs [13] talks about dynamically tracking
causality orders with a lazy update for non-blocking calls

but involves overheads in terms of communication bandwidth,
latency, and memory consumption. Such online analysis and
causality tracking protocols that rely solely on logical clocks
fail to capture all nuances of MPI program behavior, including
the non deterministic nature in which non-blocking calls can
complete. Another work on distributed wait state tracking [14]
is a run time error detection tool that provides a wide variety
of automatic correctness checks. It was designed especially
for deadlock detection and works by simulating MPI blocking
semantics.

Several automatic performance analysis tools have been
developed, for example KappaPI [15] and EXPERT [16] that
perform offline analysis of event traces searching for patterns
that indicate an inefficient behavior. These tools take a trace
file from the execution of the application and try to detect
performance bottlenecks using certain performance properties.
However a limitation with these tools is they do not provide
any insight into internal consistency protocols that could effect
application correctness. Existing (shared-memory concurrent
program) debugging techniques [17] do not directly carry over
to MPI, where operations typically match and complete out-
of-program order according to an MPI-specific matches-before
order.

VI. CONCLUSION

In this work, we presented a tool to verify that IO opera-
tions in HPC codes are properly synchronized and used this
tool to analyze representative HPC applications. Application
programmers can use the tool to check that their IO code is
race-free. The analysis indicates that it is reasonable to require
the IO of HPC applications to be race-free and to use this
assumption in the design of Parallel File Systems.
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