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Abstract—I/O performance in a multi-user environment is
difficult to predict. Users do not know what I/O performance
to expect when running and tuning applications. We propose to
use the IO500 benchmark as a way to guide user expectations
on their application’s performance and to aid identifying root
causes of their I/O problems that might come from the system.
Our experiments describe how we manage user expectation with
IO500 and provide a mechanism for system fault identification.
This work also provides us with information of the tail latency
problem that needs to be addressed and granular information
about the impact of I/O technique choices (POSIX and MPI-IO).

Index Terms—I/O, workflow, data center, benchmarking

I. INTRODUCTION

LARGE scale high performance computing (HPC) fa-
cilities are usually shared by multiple users running

their various applications. In this multi-user environment,
I/O is one of the resources that are shared among all of
the cluster users. This causes performance variability on the
running applications since each repeated run might not get
an identical share of resources such as storage system and
network bandwidth. This makes predicting an application’s I/O
performance difficult given all of the other various intertwined
factors, e.g., the application’s structure, interference from other
applications, and filesystem characteristics.

The difficulty to predict the I/O performance and its variabil-
ity leaves users with the inability to know what to expect when
running and tuning the I/O performance. In this situation, users
tend to rely on their own perception and personal recollection
that the application is slowing down or theoretically should
be able to run faster. This situation also has been observed
by Kunkel and Betke [1] when proposing probing to track
user-perceived slowdown. There are several works [2], [3], [4]
proposed to track and monitor the I/O performance variability
inside HPC facilities, but most of them are focused on the
system maintainer as the main stakeholder and leave most
users in the dark with what to do to improve their applications.

Long established individual I/O benchmarks, such as IOR
and MDTest each offer a glimpse into one factor the user
may consider when tuning their code. To get a full view, the
user will have to run several benchmarks and compare the
combined results against what their application can achieve to
assess how well the application’s I/O is performing.

Ideally, a benchmark can reveal the best and worst-case
expectations. It should also offer more detailed components
that reveal different considerations for their understanding of
their application’s expected performance. For large writes,

Fig. 1. Illustration of the bounding box of the user expectation.

such as for a checkpoint operation in a scale-up application,
looking at I/O bandwidth primarily would be a good guide.
For a machine learning application that reads many small files
or just many small reads, the basic IOPs a system can offer is a
better indicator. With applications having different kinds of I/O
phases, a mixed approach that reveals the different aspects of
performance represents the workload better. By understanding
the access patterns of an application, it is possible to get
a rough guess as to how well its I/O calls are performing
compared to what should be expected on the system. In this
way, a user could use this information as a guide for when
and where to tune.

We want to provide users with easy-to-digest and realistic
expectation about their application’s I/O performance in the
specific environment where their applications are running.
By having a realistic expectation, users can devise a tuning
strategy with a reasonable target to optimize their application.
In this pursuit, we propose to use the IO500 benchmark [5], [6]
as a way to manage user expectation for a HPC system. The
IO500 benchmark is designed to offer a balanced, trustworthy,
and representative performance measurement of the typical
workloads observed on real systems [5], [7].

The rest of this paper is organized as follows. First is an
overview of the IO500 benchmark and why we believe it
can be useful as an end user tool in Section II. Next, in
Section III, we provide an overview of the proposed workflow
for an end user to get their own production-time view of the
I/O characteristics for their system and how to use them to
tune their application. Section IV offers an overview of the
experiments performed with results in Section V. We offer a
short discussion and future plan in Section VI.
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TABLE I
IO500 BENCHMARK COMPONENTS

Component Tests Metric Explanation
IOR ’easy’ ior easy write,

ior easy read
GiB/s Free to tune IOR parameters. Typically file-per-process, large, aligned

chunks to get the best possible bandwidth performance
IOR ’hard’ ior hard write,

ior hard read
GiB/s Limited options to tune. Forced to use small unaligned I/O to a single

shared file for the worst possible bandwidth performance
mdtest ’easy’ mdtest easy delete,

mdtest easy stat,
mdtest easy write

KIOPS Free to tune mdtest parameters with zero size files in separate directory
per process to represent best case scenario for metadata rate

mdtest ’hard’ mdtest hard delete,
mdtest hard stat,
mdtest hard write,
mdtest hard read,

KIOPS Limited options to tune. Forced all processes to write on a single
shared directory. Representing worst case scenario for metadata rate

Find find KIOPS Finding specific subset of files from those created by four scenarios.

II. IO500 BENCHMARK

The IO500 benchmark is a benchmark suite that is designed
to capture user-performance experience. The benchmark en-
courages balanced systems that do not focus on just a single
metric, such as bandwidth or IOPs (for IO500, metadata
performance). To achieve this goal, it provides five main mea-
surement scenarios using IOR and mdtest as listed in Table I.
The tests represent the best and worst possible scenarios for
bandwidth and metadata in the form of ’easy’ and ’hard’ use
cases respectively. To avoid weighting any particular metric
more heavily than any other, the individual IO500 benchmark
components are combined using a geometric mean to find the
central tendency among the various metrics.

The IO500 community also provides IO500 list, a ranked list
where data center can compete to top the list using their best
reported IO500 performance. In the IO500 list, the challenge
to get a top score for IO500 is to tune the parameters to balance
the ’hard’ and ’easy’ bandwidth tests against the ’hard’ and
’easy’ metadata tests. In many cases for Lustre, sacrificing a bit
of bandwidth can offer higher metadata performance. While a
top score does not indicate that all applications can achieve that
performance, the range from the ’hard’ to ’easy’ on bandwidth
and metadata give bounds for users can expect [8], [5] as
illustrated in Figure 1.

The IO500 list can help users to determine the latest trend
and how their data center performs compared to the other
data centers. However, comparing what the user can achieve
against what the results in IO500 list is not a direct nor easy
comparison because of several reasons:

First, IO500 shows strictly the storage layer performance for
the system. Additional overheads introduced by middleware,
I/O libraries, data organization and structure, and other factors
above the storage layer are not represented. To be fair, many
of these are application-specific, and measuring them in a
general-purpose, storage-oriented benchmark is not reasonably
expected. Despite this, some value for the application users
should be available based on these numbers.

Second, the tests in IO500 are carefully designed to elim-
inate caching effects and, in the case of the ’hard’ tests, to
be particularly difficult for a storage system to show excellent
results. The ’hard’ tests are supposed to represent the worst-
case scenario a storage system may encounter. The key to
this is that the storage system’s worst-case scenario may have

no relation to the application’s worst-case scenario nor will it
include factors above the storage layer, such as those outlined
above. The IO500 benchmarks are ’pure’ tests of each feature
rather than the mixed workload experienced by many, if not
most, applications.

Lastly, entrants of the IO500 list only report the best results
they achieve rather than each set they create. This leads
to a slightly to a significantly skewed view of the system
for those relying on the published list to know their target
system’s characteristics. Further, if the dedicated system time
is used to run IO500, then interference effects from other
running applications would be reduced or eliminated showing
an unrealistically rosy picture of the possible performance
for the platform. Given these limitations, the potential value
of using IO500 for application user’s to understand their IO
performance is unknown.

III. WORKFLOW

The general overview of the workflow proposed in this work
can be seen in Figure 2. The workflow is designed to use
IO500 characteristics to help users managing their expectation.
It consists of three main steps: 1) Setting up the boundary
of expectation; 2) Mapping the application’s I/O performance;
and 3) Tuning the application with reasonable expectation. An
overview of the workflow used is illustrated in Figure 2.

A. Boundary of User Expectation

The first step of the workflow is creating the bounding
box of user expectation. We run IO500 with the same con-
figuration multiple times to capture performance variability
on the benchmark bandwidth and metadata rate results. In
Figure 2, the blue dashed line represents the boundary of
user expectation. Multiple dashed lines in this boundary show
the performance variability coming from the shared resource
nature of the systems that we must take into account. This
recorded variability information will keep the information
about tail latency in check and get information on the system’s
health.

In forming the bounding box, we only use the bandwidth
and metadata score coming from IOR and mdtest ’easy’ and
’hard’ without find operation. While the IOR and MDTest
’easy’ and ’hard’ operations are controlled to require open
code in those base benchmarks and the configuration used
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Fig. 2. Workflow steps of the project

published, the find workload is a place for creativity that
pushes vendors to identify the most efficient way to walk the
namespace for a storage system representing an operation like
identifying purge candidates. The original benchmark offered
a basic parallel version of find that has since been a place
for innovation. For instance, the Intel DAOS [9] team wrote
a custom find operation resulting in excellent performance for
them. More recently, the MadFS team architected their system
to enable very fast metadata search operations, like find,
resulting in an astoundingly high value. Given the underlying
implementation, the result is still comfortably within both
theoretical and practical limits. Since this component is unlike
what nearly all applications will do, we choose to ignore this
component in favor of those that better represent application
activities.

While having the user run the IO500 benchmarks them-
selves rather than relying on a system provided, production
mode standard may seem counter-intuitive. The idea is that
as storage systems age, device characteristics can shift due
to bad block management or other media issues degrading
performance. This has been observed in disk drives [10] and
flash-based devices [11]. Having the user run the benchmarks
fresh each time will offer a current view of the system rather
than a potentially out of date picture.

B. Mapping the Application Performance

For the second step, we run the application multiple times
as well, since it will also experience variability, to obtain
measurements for the current performance. A tool such as
Darshan DXT [12] can offer fine grained details about the
I/O operations the application performs giving a view into
the performance of different operations, such as bandwidth
related writing or reading or metadata operations that would
suggest IOPs rates. Using that information, it is possible to
map the application’s I/O performance onto the same graph.
Hopefully, these results appear within the box rather than
below or to the left (worse than projected worst case). Given
the additional software and hardware layers involved, this is
possible, particularly for feature-rich libraries. In Figure 2, the
red dots in Steps 2 and 3 represent the observed application
performance.

C. Tune the Application

After knowing the position of the application’s performance
on this graph, the user can either make adjustments under-
standing where the issues lie or consult an I/O expert and
present them with the evidence seeking advice. Once tuned,
the user can return to Step 2 and re-measure the application
performance and compare the new value locations against the
previous measurements. In Figure 2, the small red arrows
connected to the red dots in Step 3 represent the desired
movement in the observed performance after having tuned
the application. The new application measurements are not
presented to avoid confusion.

This measure/tune cycle of Steps 2 and 3 is expected to be
executed potentially many times until the application reaches
acceptable performance for the user. The challenges related
to the software and hardware above the storage system must
temper expectations. Additional experiments with these layers
to determine their overhead contributions could help set more
reasonable expectations.

IV. EXPERIMENT

The experiment in this project mainly covers the first step
of the workflow and demonstrates the challenges in obtaining
the bounding box of user expectations when compared to
the results reported on the IO500 list itself. We start to
explore the tools and methodology to plot the application’s
I/O performance from the second step using BTIO benchmark.
Since the second step is still in the exploratory stage and has
strong ties with the third step, step two and three will be part
of our future work.

We conduct the initial experiments in RWTH Aachen Uni-
versity on the CLAIX-2018 cluster. CLAIX-2018 consists of
1032 nodes each with 48 cores Intel Skylake and 384 GB of
memory. There are several attached BeeGFS filesystem [13]
nodes, each with a 480 GB SSD on each of these nodes.
We are using BeeGFS to minimize interference and reduce
the performance variability for this model. The IO500 is also
configured using the default parameters to avoid excessive time
doing fine-tuning for this proof of concept work.

We run the IO500 test with POSIX-IO and MPI-IO API to
get a comparison of these different I/O techniques. Most HPC
applications are using these I/O techniques and it will help
us build the second step of the workflow in the future. The
benchmark runs on four nodes of BeeGFS with the same node
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leaf switch to reduce network interference. For these tests, the
benchmark is run several times and the results are reported in
Section V.

In the exploratory mapping work, we are using BTIO
benchmark version 3.4.2. The benchmark is compiled with
subtype ”full” class A, B, and C. We run the benchmark on
4, 9, and 16 processes. Darshan with DXT variable on is used
to profile the application. We currently only work with the
aggregated information from the Darshan log to do the plotting
on a single node.

V. RESULTS

A. Forming Bounding Box of User Expectation

Figure 3 represents an IO500 score for one run of the
benchmark and shows a bounding box of user expectation.
The aggregated read-write bandwidth and metadata score are
plotted into the Cartesian coordinate system that represents
the relative position of the bandwidth and metadata score for
’easy’ and ’hard’ scenarios.

Fig. 3. Single run of POSIX-IO IO500 plotted into Cartesian coordinate
system made of the aggregated read-write bandwidth score and metadata score

Fig. 4. POSIX-IO results from the aggregated read-write bandwidth and
metadata score

Each run gives four values representing two vertices of
the box. We start with plotting the ’hard’ value into the
system, and then subtracting the ’easy’ with ’hard’ value to
determine the width and the height of the box. Since the
premise of IO500 is that ’hard’ scenarios represent the worst
case scenario, the score of ’hard’ scenarios should not score

better than the ’easy’ scenarios, thus we expect the bounding
box will appear in the same sector as figure 3.

We run the same IO500 config file multiple times, as can
be see in Figure 4, and observe a performance variability that
we already expected between each run.

Fig. 5. POSIX-IO write performance. Meta data range is smaller compared
to the aggregated score

Fig. 6. POSIX-IO read performance. It has large range of meta data
performance with much smaller bandwidth performance range and variation

When forming the bounding box of user expectations,
besides the aggregated read-write result, we can also look
at the read and write value individually. The result for write
and read performance can be seen in Figure 5 and Figure 6
respectively. Read and write performance bounding box have
different patterns where meta data range of the write bounding
box is smaller than the aggregated performance, and read
bounding box has much bigger meta data range performance
compared to the aggregated value.

With more than 20 runs, we observe that size of the boxes
fluctuates but will stabilize within a certain range and will
not expand or shrink further. Upon stabilization, we determine
that the union of all of the boxes forms our bounding box of
user expectations, and should represent the boundaries of the
performance variability. We then repeat this experiment with
MPI-IO API.

B. Anomalous Bounding Boxes

From the previous result with POSIX-IO run in Figures 4, 5,
and 6, we can form a bounding of user expectation as it
is intended by IO500 benchmark design. However, we see
anomalies on several runs with MPI-IO. Figures 7 and 8
show that a few of the IOR ’hard’ scores are better than the
IOR ’easy’ score. This challenges the notion that the IO500
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IOR ’hard’ benchmark represents the worst case scenario for
bandwidth. This anomalies are easily seen on the graph as a
box laying in the wrong sector, and this can act as a quick
sanity check of the cluster/filesystem health.

Fig. 7. MPI-IO anomaly from the aggregated score. The Cartesian diagram
formation is designed to create figure that will to the direction of ’easy’ and
’hard’ scenario for identifying such scenario

Fig. 8. MPI-IO anomaly from the write score. Aggregated score, write and
read score are all showing couple of runs get higher IOR ’hard’ score than
IOR ’easy’ score

Further investigation led to the discovery that a particular
node leads to degraded performance. While the details are
not clear, this broken node is most likely the reason behind
these anomalous results. While the discovery of the broken
node is useful, the benchmarks also revealed laggard processes
demonstrated by tail latency that will be described in the Tail
Latency Observations section.

C. Exploration on the I/O Performance Mapping

To test the feasibility of the second step of the workflow we
proposed, using one node, we map application’s performance
into the IO500 bounding box using performance results of
BTIO benchmark. From the Darshan log output, BTIO has
both POSIX-IO and MPI-IO result in it. We use these results
from the Darshan log for plotting.

In Figure 9, the result from the BTIO benchmark falls
outside of the bounding box of the user expectation. Our hy-
pothesis is that the application utilizes page caching, whereas
the default config of IO500 runs for 300 seconds and this
eliminates the cache effect. To test this hypothesis, we run
the same IO500 configuration for only two seconds on the
’easy’ scenario. The result from the two seconds run is in the

grey colored bounding box where we can see that now the
application’s bandwidth falls within the bounding box of the
user expectation for both MPI-IO (Figure 9) and POSIX result
(Figure 10).

The metadata rate formula that we used in this plot falls
within the IO500 result only for MPI-IO API. In Figure 10
however, we can see that the formula that we use does not
fit into the bounding box of user expectation. Currently, We
define metadata rate (in KIOPs) as a total number of I/O
operations divided by the file meta time from the Darshan
log output. This formula might not suitable for this plotting.
Therefore, We still need to explore tools, metrics, and formula
that might be able better represent the I/O performance.

Since the IO500 configuration for the ’easy’ parts are not
optimized, it is still possible that other application’s perfor-
mance will not fall inside the bounding box of user expectation
due to the setup we have. The caching effect also needs to be
investigated further, along with performance I/O tools that can
give more granular report on the application’s performance.

Fig. 9. I/O Performance Mapping using BTIO benchmark with Darshan. The
bounding box is from MPI-IO API on a single node. Grey colored box is the
same config from the boundary formation but running for 2s for ’easy’ case

Fig. 10. I/O Performance Mapping using BTIO benchmark with Darshan.
The bounding box is from POSIX API on the single node.

D. Tail Latency Observations

Several scenarios in IO500 runs can have significant latency
that needs to be addressed as see in Figure 11. The runtime
duration variability of the figure on the top is taken from the
runtime numbers reported by multiple IO500 runs, and the
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Fig. 11. Runtime distribution of each IO500 scenario showing the tail latency

figure below it is highlighting the runtime distribution from
each IO500 scenarios that is too small to observe only using
the top figure. In this the detailed view, we can observe the
outliers from each scenario. For our system, the tail latency
serves as a system health check revealing a broken node and
some unrelated system issues that were traced to the network
as a partial source of the latency.

While the initial variability expected due to various system
interference effects would be bounded, deeper inspection of
the results reveals that not all processes are completing at
near the same time causing a system stall waiting for the
stragglers to complete. This tail latency has also been an issue
in the IO500 benchmark community forums with discussions
about the impact of the stonewall requirement and the resulting
tail latency for stragglers causing inordinately long runtimes.
To keep the amount of data written consistent and to best
represent more realistic system behaviors, the IO500 team
has been hesitant to find a reasonable way to address this
problem. Our system results demonstrate that this tail latency
issue exists even for our small system and is not just a feature
of large scale HPC centers.

VI. DISCUSSION & FUTURE WORK

While setting out to explore a workflow for users to tune
their application I/O behavior is useful, it is not always what is
learned. In this case, a previously unknown fault in one of the
nodes is revealed by the experiments given the expectation of
the relationship between the ’easy’ and ’hard’ tests. Without
this relationship, users would just assume that the machine
was operating slowly, but as intended.

The performance boundaries using different I/O techniques
can be established and it provides user expectation, as well

as identifying some system faults. Our initial step still can
be refined further through fine tuning IO500 configuration,
getting data from other filesystems and I/O techniques e.g.,
HDF5, and scaling up the experiment.

From the exploratory work on mapping BTIO performance
into the bounding box, we see a possibility to improve the
IO500 configurations to incorporate cache effect into our
model. Our future work will also cover exploration on I/O
tools, metrics, and formula that can represent the application’s
I/O performance and fit to our model.

This project is currently displayed in: https://bit.ly/
3BhhAFZ.
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