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Abstract—DNN models trained with very large datasets can
perform rich deep learning tasks with high accuracy. However,
feeding huge volumes of training data exerts significant pressure
on IO subsystems as the entire data is re-loaded in random order
on every iteration to enable convergence, with very little scope
for reuse. To address this challenge, we co-optimize data tiering
and iteration in DNN training for any given dataset and model
with bandwidth and convergence conscious mini-epoch training
(MET). This approach can substantially reduce the IO bandwidth
required to provide sustained read throughput matching the
processing speed of accelerators. Further, we introduce two
different feedback mechanisms to adjust the repeating factor
over each mini-epoch during the training. We have evaluated
three different applications with MET. Most of them work out-
of-box with modest MET parameters. The adaptive repeating
factor design was able to gain back most of the accuracy drop
due lo large MET parameters.

I. INTRODUCTION

Advancements in computational capabilities for training
deep neural networks (DNN) favor larger models trained on
increasingly bigger datasets to achieve results with significant
improvements in accuracy than was possible before [1]. Many
HPC applications using AI could have arbitrary large datasets
because they are generated through simulation [2]. However,
with this approach, training models for the real world could
involve iterating through huge volumes of data (TBs to PBs),
too expensive to fit in the performance tier of the underlying
storage system. The massive IO bandwidth requirements for
feeding training data to keep powerful accelerators maximally
utilized is becoming a scalability bottleneck for AI training.
For example, training different CNNs on 8 NVidia A100 GPUs
in a single compute node requires up to 130 GB/s of IO
bandwidth to keep the GPUs busy as shown in Figure 1.

Fig. 1. Required IO bandwidth to feed 8 A100 GPUs for CNNs

Traditional storage data caching and tiering solutions are
ineffective in addressing this bottleneck even though the data
gets processed repeatedly within a training run and across mul-
tiple training runs for hyperparameter tuning. DNN training
algorithms, e.g., mini-batch stochastic descent (SGD) iterates

through the entire dataset in a different random order for every
epoch to achieve theoretical convergence estimates [2], issuing
IO to reload data from the capacity tier to the performance
tier, causing performance to be limited by the bandwidth of
the capacity tier. A recent study on data stalls observed when
training several DNNs shows that when no more than 35% of
the dataset can be cached in memory, 10-70% of epoch time
may be spent blocking on IO (fetch stalls) [3].

Several researchers have explored strategies that are less
wasteful of IO [3], [4], [5], [6], [7]. However the effective-
ness of such optimizations depends not just on the system
performance characteristics but also on the characteristics of
the dataset and influence on model convergence. We propose
co-optimizing the data tiering and iteration scheme for DNN
training with a systematic approach that is not just bandwidth
aware but also model convergence conscious and data sample
influence aware. There are two main challenges of this radical
change. The first one is to provide sustained read throughput
for the local accelerators that matches the required IO band-
width. The second one is how to introduce the technology
with minimal disruption to current ML software pipelines and
processes.

The contributions of this work are listed as follows,
• We propose a simple but effective storage tiering tech-

nique called mini-epoch training (MET) to reduce the IO
bandwidth required to fetch data from the capacity tier
of the storage hierarchy.

• We analyze, in detail, the impact of MET parameters
including number of mini-epochs and repeating factor
(number of times each mini-epoch is repeated in an
epoch) on the convergence of training for different deep
learning models from image classification, video under-
standing to climate segmentation.

• We introduce two different feedback mechanisms to
adjust the repeating factor during training so that some
accuracy drop due to large MET parameters can be gained
back.

II. PRELIMINARY

A. IO bottleneck analysis of training deep learning models

We built an IO roofline model to analyze the impact of peak
FLOPs and IO bandwidth on various CNNs with different IO
arithmetic intensity. The IO arithmetic intensity is defined as
the ratio of FLOPs per sample to the size of each input sample.
The lower the metric is, the more IO intensive the model is.
With a hypothetical DL training system that has an aggregated
peak performance of 126 PF/s, we plot the performance of



several CNNs in the IO roofline analysis. As Figure 2 shows,
even though some really deep models with high IO arithmetic
intensity are categorized as ”happy models” as they are most
compute bound, there is a significant portion of the CNNs that
are IO IO bound with several TB/s read bandwidth.
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Fig. 2. IO roofline analysis for CNNs in a system with peak 126 PF/s
Figure 3 illustrates a systemic view of two-tier storage

hierarchy in HPC environment. The training data sits at
the storage capacity tier which is typically a parallel file
system (PFS), i.e., Lustre or GPFS. For example, the total
space of the capacity tier C2 can be as large as 250PB in
the Summit supercomputer [8]. However, the aggregated IO
bandwidth (B2) from the capacity tier is limited at 2.5TB/s.
A performance tier is usually available to ”cache” hot data
in the storage tier in two different forms: (a) dedicated IO
nodes with NVMe drives such as Datawrap burst buffer nodes;
(b) local NVMe drives in each compute node. Summit uses
node-local NVMe providing an aggregated 26.1TB/s of read
bandwidth (B1).
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Fig. 3. A two-tier storage hierarchy in HPC

A recent study [9] shows that the scaling efficiency of some
HPC AI applications, such as CosmoFlow, dropped to less than
58% at 1024 nodes due to IO bottleneck. By placing the data
on the performance tier, which is the burst buffer file system on
Cori at NERSC, scaling efficiency can be improved to greater
than 85% on 1024 nodes.

Another example is the 2018 ACM Gordon Bell Prize
winner - DeepCAM - exascale deep learning for climate
analytics [10]. Training the DeepLabV3+ model on the entire
Summit supercomputer would require 65,000 samples per

second, which translates to 3.8 TB/s data read bandwidth.
Figure 4 shows that such bandwidth requirement cannot be
simply met by typical global PFS or burst buffer system.
Therefore, caching data in the local NVMe drives in the
compute nodes would help mitigate the IO bottleneck.

Fig. 4. IO bandwidth mismatch between DeepCAM data read and peak
bandwidth of different storage components, reprinted from [11]

B. Related Work

Several IO optimizations for DL training have been pro-
posed by researchers that take advantage of data samples
cached from a previous epoch when constructing randomly
shuffled mini-batches for the next epoch. These commonly in-
clude a shared distributed cache across nodes (where samples
loaded on another node can be accessed over the network),
coordinated IO pipelining and cooperative miss handling.
Certain techniques such as entropy aware IO pipelining in
DeepIO [5] and substitutable cache hits in Quiver [7] alter
the order of samples to better utilize data already present in
the cache, trading off some randomness (entropy) compared
to a full dataset re-shuffling between epochs. Entropy-aware
pipelining computes the randomness level based on the number
of samples, but does not have a way to account for how the
effect of this tradeoff could vary depending on input data
characteristics and the model. On the other hand, the MinIO
cache in CoorDL [3] avoids replacement of cached items
between epochs, without affecting the random ordering, so
that at least some fraction of data for an epoch is always
accessible from the cache. The rest still incur IO stalls. For
example, a very recent study [6] built a machine learning IO
middleware to provides a scalable solution to the IO bottleneck
by predicting where a sample will be read from given the seed
generating the read access pattern during training.

Most of these approaches require non-trival modifications
of the entire input pipeline architecture and are intrusive to
the application code. Our approach is simple yet effective:
mini-epoch training only requires changing a couple of lines
of code and training feedback module is just adding a training
callback. At the same time, it is more robust and can also
achieve higher savings as it automatically adapts to character-
istics of the dataset and model.

Many samping techniques have been explored to the reduce
the amount of data read required during the training. For ex-
ample, Dong et al. [12] used a bandit based sampling strategy
with a multi-armed bandit algorithm to accelerate the conver-
gence of coordinate descent by learning which coordinates will
yield more aggressive descent. Borsos et al. [13] proposed a
novel importance sampling technique for variance reduction
in an online learning formulation which finds a sequence of
importance sampling distributions competitive with the best
fixed distribution in hindsight. Namkoong et al. [14] employ a



bandit optimization procedure which learns probabilities for
sampling coordinates in non-smooth optimization problems
to achieve tighter convergence guarantees than their non-
adaptive counterparts. Most of these techniques are orthogonal
to our proposed mini-epoch training method and thus can be
combined to further reduce IO traffic during training.

III. DESIGN OF MINI-EPOCH TRAINING

In this Section, we first describe the main design of mini-
epoch training (MET) in a two-tier storage hierarchy. We
then describe different possible implementations of MET in
Tensorflow and other ML frameworks. Finally, we introduce
two different feedback mechanisms to adapt repeating factor
at run time.

Fig. 5. Diagram of mini-epoch training (MET) design
A. Bandwidth-aware iteration

When the entire training dataset is larger than the available
space for a given user (EC1) in the performance tier (note
that EC1 can be significantly smaller than C1 given than
many users share data on the performance tier), we introduce
mini-epochs by splitting the entire epoch into nm mini-epochs
such that each mini-epoch is smaller than 0.5 ∗EC1 for non-
overlapping mini-epochs. As shown in Figure 5, while GPUs
are iterating over mini-epoch i, we prefetch the next mini-
epoch i+ 1 from the capacity tier to performance tier at B2.
Assuming GPUs are consuming data at EB1, MET iterates
over mini-epoch i by a repeating factor (rf ) number of times
before the next mini-epoch is completely loaded. The size of
mini-epochs depends on the space available in the performance
tier, while the repeating factor reflects desired IO reduction
achieved. A higher repeating factor reduces the IO bandwidth
demand, freeing bandwidth for other nodes and applications
to share the same storage. If repeating factor is higher than
EB1/B2, the GPU stall times due to I/O is fully eliminated.
However, repeating a mini-epoch trades some randomness
(compared to shuffling a full epoch), which could affect model
convergence in certain situations.

B. Implementation in ML framework

The required code change to the ML applications is mini-
mum. We implemented MET by simply adding a stage in the
training pipeline that first splits the dataset with Tensorflow
Dataset split API and then repeats the mini-epoch with
Tensorflow Dataset repeat API. For example, with nm = 8
and rf = 16, the added stage looks like,

There are several alternative ways to implement the mini-
epoch training, i.e,. with Tensorflow Dataset window API,

where mini-epoch size is the number of training samples
in one mini-epoch. If the size of mini-epoch is not uniform,
Dataset take and skip APIs are used for the implementation
as follows,

All the above implementations require a few lines of code
change when constructing the input pipeline stages in the
ML applications. And they can be very similar in other ML
frameworks such as Pytorch and CNTK.

Currently we implement per-task data prefetching technique
as part of the input pipeline for each ML application. For
example, the mini-epoch i+1 is manually loaded from capacity
tier to performance tier at the start time of mini-epoch i and
deleted from performance tier at the completion time of mini-
epoch i+ 1.

C. Adaptive repeating factor with feedback mechanism

The baseline design of MET use a fixed rf during training,
when rf increases we observed that the convergence of
the model could be affected depending on the dataset and
the model. Therefore we next introduce two mechanisms to
adapt repeating factor (ARF) based on feedback from model
monitoring during training.

Fig. 6. Pseudo code for score based adaptive repeating factor (ARF)

1) Score based adaptive repeating factor: We use a score
to measure the convergence of the training,

• Monitor the training loss/accuracy, validation accuracy
and other metrics at the end of each mini-epoch. A score
is calculated based on a combination of the monitored
metrics.

• If the score does not improve on repeating over mini-
epoch i repeats for a number of times, early stop on this
mini-epoch and wait until mini-epoch i+1 is fully loaded
then move forward.



• Remember the optimal strategy for given dataset and
model, so this gets automatically reflected in subsequent
training runs.

The feedback module is implemented as a Tensorflow training
callback as shown in Figure 6. The combination of different
metrics is being explored and an optimal solution will be
selected. For example, a simple linear combination of train-
ing loss, training error, and validation error can be used to
construct the score.

2) Bollinger band-based adaptive repeating factor: Instead
of waiting for a predetermined numbers of times before fast-
forwarding to the next mini-epoch, we try to understand the
range of fluctuations for the score during training. Thus we
borrow the concept of Bollinger Bands from the financial
market, which consist of an N-period moving average MA
of the score, an upper band at K times an N-period standard
deviation above the moving average MA + K ∗ std, and a
lower band at K times an N-period standard deviation below
the moving average MA −K ∗ std. If the score goes below
the lower band, we decide the convergence of the model is
fluctuating out of the normal range and the training triggers
fast forwarding to next mini-epoch.

IV. EXPERIMENTS

Fig. 7. Top 1 Accuracy for MET with Resnet50 on ImageNet

Fig. 8. Top 1 Accuracy for with EfficientNet on ImageNet

We evaluated MET on one image classification task with
two different CNN models, one video understanding task,
and one HPC application. Most experiments are performed
with TensorFlow except the HPC use case which is written
in PyTorch. We applied scored-based ARF on the video
understanding task, and both score and bollinger band-based
ARFs on the HPC use case.

A. Image Classification

We used ImageNet dataset which consists of 1.28 million
training images and 50,000 validation images. We adapt the
baseline implementation of ResNet-50 and EfficientNet-B0
from the official Tensorflow models github repository. Both
models are trained with momentum stochastic gradient de-
scent (SGD). For ResNet-50, we used a global batch size
of 1024 and piece-wise constant learning rate scheduler. For
EfficientNet-B0, we used a global batch size of 256 and
learning rate schedule with exponential decay.

As shown in Figure 7, MET with small nm and rf can
match the convergence curve of baseline ResNet-50 training.
MET with modest parameters, i.e., (nm, rf ) = (64, 64), results
in about 1% accuracy drop. MET with nm greater than 300
incurs more than 7% accuracy loss. Similarly, for EfficientNet-
B0, the accuracy drop is within 1% for nm and rf up to 32.
But with (nm, rf ) = (64, 64), we already saw 6% accuracy
drop for EfficientNet-B0, which means the upper bound of
(nm, rf ) without feedback mechanism depends on the model
architecture or the training parameters, i.e., batch size.

B. Video Understanding

Fig. 9. HitRate@1 for MET with a softmax over a mixture of logistic models

We use the YouTube-8M dataset which consists of 3862
classes and a total of 6.1 million videos. We trained a softmax
over a mixture of logistic models, which is referred as MOE
model, over the video-level features including feature vectors
extracted from the video and audio, to predict the labels
associated with each video. The primary evaluation metric we
used with this dataset is “Hit@1”. We first compute scores
for each possible label for each video. The test video is
successfully classified if the highest-scoring label is one of
its ground truth labels.

As shown in Figure 9, MET with fixed rf works well until
rf hits 64 with an accuracy drop of 7%. Therefore we applied
score-based adaptive rf for nm = 64 and achieved a final
HitRate@1 at 0.783 compared to that at 0.803 of baseline.

C. Deep Learning Climate Segmentation

We implemented MET in the PyTorch version for the
climate segmentation benchmark as part of the ML. The
dataset for this benchmark comes from CAM5 simulations
and is hosted at NERSC. The samples are stored in HDF5



Fig. 10. Accuracy for MET of DeepLabv3+ model on Climate Segmentation
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Fig. 11. Distributions of repeating factors over 128 mini-epochs for adaptive
repeating factor based on: (a) score and (b) bollinger band

files with input images of shape (768, 1152, 16) and pixel-
level labels of shape (768, 1152). The labels have three target
classes (background, atmospheric river, tropical cyclone). We
used the DeepLabv3+ model in the paper [10] with a global
batch size of 64. We used the LAMB optimizer [15] with
piece-wise learning rate scheduler.

When scaling (nm, rf ) to (128, 128), MET with
DeepLabv3+ incurs more than 10% accuracy drop compared
to baseline. We applied both the score based and bollinger
band-based adaptive repeating factors for nm = 128. Score
based ARF was able to gain back about 4% accuracy while
Bollinger band-based ARF could maintain a accuracy drop of
smaller than 3% from the baseline.

Figure 11 shows the distributions of repeating factors for
both score based and Bollinger band-based ARFs for nm =
128. The score-based ARF has a wider distribution with an
average repeating factor of 55, while the bollinger band-based
ARF has a tighter distribution with an average repeating factor
of 35. We noted that there are a few mini-epochs that have a
relatively large repeating factor close to 128.

Assuming we run the DeepCAM on the entire Summit
system with B2 = 400GB/s and B1 = 26TB/s as illustrated
in Figure 3, the baseline is IO bottlenecked as explained in
Figure 4. We estimate the average training throughput and data
read bandwidth (EB2) with MET under using the following
equation,

EB2 =

∑nm
i=1 ti ∗MAX(3.8TB/s/rfi, B2)∑nm

i=1 ti
(1)

where ti and rfi are the training time and repeating factor of
mini-epoch i.

Figure 12a shows that with fixed rf >= 10 the IO
bottleneck can be mitigated and training throughput peaked
at 65,000 samples/s. Both ARFs have less than 5% of mini-
epochs with rf < 10 when there is IO stall time, and their
overall training throughput degradation is negligible. With
(nm, rf ) = (128,128), the average EB2 can be reduced from
400GB/s to 30.4GB/s, while the EB2 for scored based and
bollinger band based ARFs are 90.7 GB/s and 147 GB/s
respectively.

Fig. 12. Analytical modeling results for average (a) training throughput, and
(b) data read bandwidth (EB2) with MET on the Summit system

V. DISCUSSION

A. Co-optimize data tiering policies

Prefetching of mini-epochs is performed by the underlying
storage tiering system at the bandwidth corresponding to
the optimal strategy from the feedback module. Usually the
convergence is more sensitive to repeating factor at early
phases during the training. As a result, the system will try
to increase repeating factor as the training is making progress
and the convergence is not impacted. More data reuse means
the prefetching can be done at a data rate lower than B1. If
the impact of repeating factor on convergence speed fluctuates
across mini-epochs, more states will be tracked to enable
adaptive repeating factor to different mini-epochs, and the
prefetching rate also changes dynamically. If too much bias is
added with large repeating factor of mini-epochs, there are two
directions for co-optimization: (1) compose each mini-epoch
randomly in each pass to reduce the bias; or (2) increase batch
size to reduce the bias at every iteration.

B. IO bound vs. Data processing bound

Data read bandwidth is not necessarily the only performance
bottleneck in the input pipeline of all training workflows.
Instead, we observed input pipeline stalls due to the slowness
of data preprocessing. For example, in some of the image-
based models, there are image augmentation operations includ-
ing padding, scaling, rotations, resizing, distortion, flipping,
brightness adjustment, contrast adjustment, and noising which
consume a lot of compute resources and may not keep up
with the pace of the model training on GPUs. Under these
scenarios, MET could also help accelerate the input pipeline
performance by storing the preproccessed version mini-epoch
data in the performance tier. However, the downside is the
reduced level of randomness of the input data fed to the model
because for any given sample, its preprocessed version will
remain the same for rf times. In comparison, there are some



random effects if preprocessing is performed online in some
operations, i.e., random rotation, resizing, and flipping.

VI. CONCLUSION

We have evaluated three different applications with MET.
Many of them work out-of-the-box with modest MET parame-
ters. With larger MET parameters, i.e. both nm and rf greater
than 64, there could be about 5% to 11% accuracy drop with
fixed rf design compared to the baseline, while the adaptive
repeating factor was able close most of the accuracy gap.
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L. Shao, S. He, T. Kärnä, D. Moise, S. J. Pennycook, K. Maschhoff,
J. Sewall, N. Kumar, S. Ho, M. F. Ringenburg, Prabhat, and V. Lee,
“Cosmoflow: Using deep learning to learn the universe at scale,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, ser. SC ’18. IEEE
Press, 2018. [Online]. Available: https://doi.org/10.1109/SC.2018.00068

[10] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips,
A. Mahesh, M. Matheson, J. Deslippe, M. Fatica, Prabhat, and M. Hous-
ton, “Exascale deep learning for climate analytics,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage, and Analysis, ser. SC ’18. IEEE Press, 2018.

[11] Q. Koziol, “I/o for deep learning at scale,” in 35th Symposium on Mass
Storage Systems and Technologies (MSST, 2019.

[12] J. Dong, J. Zhang, and Y. Shi, “Bandit sampling for faster activity and
data detection in massive random access,” in ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2020, pp. 8319–8323.

[13] Z. Borsos, A. Krause, and K. Y. Levy, “Online variance reduction for
stochastic optimization,” 2018.

[14] H. Namkoong, A. Sinha, S. Yadlowsky, and J. C. Duchi, “Adaptive
sampling probabilities for non-smooth optimization,” in Proceedings
of the 34th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, D. Precup and Y. W. Teh,
Eds., vol. 70. PMLR, 06–11 Aug 2017, pp. 2574–2583. [Online].
Available: https://proceedings.mlr.press/v70/namkoong17a.html

[15] Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song,
J. Demmel, K. Keutzer, and C.-J. Hsieh, “Large batch optimization for
deep learning: Training bert in 76 minutes,” 2020.


