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Abstract—High-throughput molecular docking is a data-driven
simulation methodology to estimate millions of molecules’ posi-
tion and interaction strength (ligands) when interacting with a
given protein site. Because of its data-driven nature, the high-
throughput molecular docking performance depends on how fast
we can ingest data into the processing pipeline and how efficiently
we can write molecular docking results to a shared file. This
work characterizes the I/O performance of a high-performance,
high-throughput molecular docking application, called Docker-
HT, running on a supercomputer up to 512 computing nodes with
two different parallel I/O configurations. We show that a tuned
I/0 configuration can improve the overall parallel efficiency from
71% to 90% on 512 nodes and identify and solve a performance
degradation observed when running on 16 and 32 nodes.

Index Terms—High-Throughput Molecular Docking, Parallel
I/0, Darshan, I/O Profiling

I. INTRODUCTION

High-throughput molecular docking, which is a part of vir-
tual screening, is the usage of High-Performance Computing
(HPC) systems to investigate and examine large data sets of
chemical compounds to determine and discover potential drug
candidates [1]. The basic building block of virtual screening
is the molecular docking of a ligand (a small molecule with
typically less than a hundred atoms) to a given protein location,
called pocket. In a nutshell, molecular docking estimates and
scores the ligand’s three-dimensional pose and binding with
a target protein pocket for a high number of ligands. In the
context of drug discovery, the ligand with a high score from
the molecular docking procedure is a potential drug candidate,
while the protein pocket is the drug target. In virtual screening,
million of ligands from chemical compound databases are
evaluated against the same protein pocket. Virtual screening
has been one of the primary tools to support discovering po-
tential drugs against the Coronavirus disease (COVID-19) [2],
(3]

From an HPC perspective, high-throughput molecular dock-
ing is essentially an embarrassingly parallel data-driven prob-
lem. Since we can process each ligand independently, high-
throughput molecular docking is data-parallel and can be
parallelized without requiring communication across processes
or threads. For instance, each process or thread can compute
and score a specific ligand in parallel. While the number of
pockets that we want to evaluate is limited (in this study,
we study one pocket), the chemical library of ligands can be
arbitrarily large. Therefore, it is crucial to define how we read

ligands in input and write the results. However, because of
its data-driven nature, the high-throughput molecular docking
performance depends on how fast we can ingest data (often
from a very large shared file) into the processing pipeline and
how efficiently we can write molecular docking results. The
I/O performance depends not only on the particular I/O setup
and implementation but also on how the I/O stage interacts
with the rest of the application pipeline. I/O can become a
significant performance bottleneck.
The contributions of this paper are the following:

o We characterize the I/O parallel performance of a large-
scale high-throughput molecular docking code, Docker-
HT, up to 512 nodes. We use two configurations with
different read and write buffer and queue sizes, number
of parallel writers, and Lustre stripe counts. We show that
a tuned I/O configuration is crucial for the performance

o By monitoring the overall high-throughput molecular
docking performance, we evaluate the impact of I/O
performance on the overall application performance and
identify a parallel efficiency issue.

II. HIGH-THROUGHPUT MOLECULAR DOCKING AND I/O
WITH DOCKER-HT

In this work, we evaluate the I/O impact on perfor-
mance high-throughput molecular docking using the Docker-
HT code. The Docker-HT code development stems from the
LiGen workflow [4], the LiGenDocker code [5] and tuning
of functional parameters with the LiGen mini-app, GeoDock-
MA [6]]. In LiGen, each stage of the workflow is a one-
purpose application (OPA), a single application that carries
out a single task, e.g., docking a molecule or score a pose.
The user is then responsible for composing the OPAs to define
the workflow of interest for a given problem. By definition,
each OPA reads the target ligands from the standard input
and writes the result to the standard output. This allows
using UNIX pipes to create workflows easily. Differently
from LiGen, the Docker-HT code combines the OPAs in
one monolithic application implementing the entire workflow.
In addition, Docker-HT has been specifically designed for
HPC systems, including supercomputers with heterogeneous
hardware. Docker-HT is written in C++17 and uses pthreads
for on-node parallelism, CUDA for Nvidia GPU nodes, and
MPI for inter-node communication. Within each node, we use
pipeline parallelism and work-stealing to process the ligands.
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Fig. 1. Example on how three MPI processes, represented by a different color,
split an input file of NV GB and on how they perform the read operations.

A. Read Operations

To carry out the dock and score operation, we need to
have information about the ligand and the target pocket. Since
Docker-HT considers the pocket constant, it reads the related
files once at the beginning of the execution using an MPI
IO collective read [7]. Therefore, the cost of this operation
is greatly amortized over the lifespan of the application. On
the other hand, the processes that contribute to the elaboration
need to agree on how they process the ligands contained in
the input file. Figure [I] shows an example where Docker-HT
reads from an input file of N GB with three MPI processes.

The idea is to divide the input file into a number of slabs
equal to the number of MPI processes based on the file size.
In the example, each process will elaborate 1/3 of the file.
Starting from the beginning of the slab, each process reads
chunks of data with a granularity that the user can configure,
i.e., the Read Buffer Size. One problem that we need to
consider is that the size of a ligand description is not fixed
but depends on the molecule’s number of atoms and bonds.
Therefore, it seldom happens that a ligand description starts
with the beginning of a slab and it stops at the ending of a
slab. We use the convention that each process elaborates the
ligand whose description starts after its slab begins, while it
stops reading the file when it finds the start of a ligand past
the slab end. Thus, it is possible that a process reads more
content after the slab end for the following two reasons: the
Read Buffer Size is not a divisor of the slab size; and because
we need to complete the description of the last ligand that we
need to process. We implemented the reader stage using MPI
I/O non-collective read operations. The frequency of the read
operations depends on the throughput of the slowest stage of
the computation pipeline, which is the stage that docks and
scores a ligand.

B. Write Operations

For each ligand that we read from the file, we need
to store a line in the CSV-like output file that relates the
molecule with its score. The order in which we store the
lines does not matter. Therefore, we can efficiently aggregate
data before issuing the write operation on the file system.
When implementing this strategy with MPI I/O and sup-
port MPI_THREAD_MULTIPLE, we incurred into technical
problems with MPI I/O implementations [7]. For this reason,
we implement the write operation using a two-step approach
inspired by the MPI I/O collective write. We expose to the
end-user two parameters: the number of MPI processes that

issue the write operation (Parallel Writers), and the maximum
amount of data that they write (Write Buffer Size).

Figure [2] shows an example where six MPI processes write
to the output file. In this example, we also assume that the
user set the number of Parallel Writers to two. In the writer
initialization, we assign each MPI process to a writing group
based on the number of MPI processes and Parallel Writers.
Suppose the number of MPI processes is not a multiple of the
number of Parallel Writers. In that case, we enlarge the size
of the first groups to include the spare ones to minimize the
difference between the groups’ sizes. We use the convention
that the writer is the MPI process with the lowest rank in its
group.

While the application pipeline is running, the writer stage
of each MPI process appends the output of each ligand in
an accumulation buffer. The maximum size of this buffer is
equal to the Write Buffer Size divided by the number of MPI
processes in the group. When appending the current line of the
CSV would increase the size of the accumulation buffer over
its maximum size, or there is no more ligand to elaborate, the
writer stage initiates the write operation.

The first phase aims at aggregating all the accumulation
buffers of a group to the writing buffer of the writer. It
is crucial to note that the actual size of each accumulation
buffer is different because it depends on the computed ligands.
Therefore, before issuing the gather operation, there is a
synchronization between the MPI processes of a group to agree
on the writing buffer size and displacement. In this phase, each
group operates in parallel. In the second phase, all the writers
exchange information about their writer buffers and agree on
the offset for all the write operations. Eventually, each writer
will issue the actual I/O operation in parallel.

The last issue that the writer stage must consider is the
termination problem: the amount of output that an MPI process
generates depends on properties of the ligands that it elabo-
rates, which are impossible to foresee. This means that each
writer can issue a different number of write operations. For this
reason, after each write operation, the writer will broadcast the
maximum amount of data written by all the writers to the MPI
processes of its group. We use the convention that if the latter
is equal to zero (no data were actually written), the global
computation is completed. Otherwise, the writing stage of the
MPI process needs to re-start another write operation even if
it has no more ligand to process and its accumulation buffer is
empty. This implementation yields significant benefits. On the
main hand, it does not require a single operation that involves
all the MPI processes but only a subset of them. On the other
hand, it exposes two intuitive parameters that can significantly
change the access pattern of the application. Moreover, the
semantic is similar to the Stripe Count and Size of the Lustre
parallel file system.

III. EXPERIMENTAL SETUP

We evaluate the Docker-HT I/O performance on the Beskow
supercomputer at KTH Royal Institute of Technology. Beskow
is a Cray XC40 system, with 2,060 compute nodes, equipped
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Fig. 2. Overview of the two-phases writing procedure, using an example with six MPI processes, represented by a different color, that write the output file.

We omit from the picture all the synchronizations required to gather the data and to perform the parallel write.

with two Xeon E5-2698v3 Haswell 2.3 GHz CPUs (16 cores
per CPU) per node and high-speed network Cray Aries. The
storage employs a Lustre parallel file system (client v2.5.2)
with 165 OST servers. The OS is SUSE LINUX (Release
11). Docker-HT is built with the Cray Compiler Environment
10.0.1, Cray MPICH 7.7.14, and the Boost library version
1.50. Docker-HT uses hybrid parallelism with pthreads and
CUDA on node and MPI for inter-node parallelism. We use
a pool of 32 pthreads per node (as the number of cores per
node on Beskow) and a number of MPI processes equal to the
number of nodes. We perform simulation up to 512 nodes: in
this configuration, we use 512 MPI processes and a total of
16,384 pthreads.

As ligand data set, we use the Covid-19 MolEcular DockIng
AT homE (MEDIATE) ['| that includes 3.4 million ligands.
The original data set is 10.3 GB large in the .sdf format.
We use OpenBabel [§]] and a LiGen pre-processing tool to
convert the original . sdf file first to the .mol and then to a
binary format for Docker-HT. The final binary file, including
all the ligand information, is 2 GB large. We use the execution
time, bandwidth for I/O operations, and the per-node number
of ligands docked per second (ligand/s) as main performance
figures of merit.

We use the Darshan profiler (version 3.3.1) to measure the
I/O performance. Darshan is a low-overhead tool to investigate
the I/O performance of parallel applications [9]. We extract the
bandwidth and amount of moved data from Darshan logs for
each file (both read and written).

In our tests, we evaluate the impact of scaling the number of
nodes on the I/O nodes. We use two Docker-HT configurations
with different read and write buffer sizes, Lustre stripe counts,
and number of parallel writers. We summarize the values for
two different configurations in Table [II We call default con-
figuration the standard Docker-HT I/O set-up without setting
any flag. We set the advanced configuration using Docker-HT

Uhttps://mediate.exscalate4cov.eu/downloads/Commercial_MWIlower330T.
Z1p

Default | Advanced
Read Buffer Size 20 MiB 1MiB
Lustre Stripe Count - Read 1 4
Write Buffer Size 20 MiB 1 MiB
Parallel Writers 1 14
Write Queue Size 1 20000
Lustre Stripe Count - Write 1 14

TABLE

DEFAULT AND ADVANCED CONFIGURATIONS FOR PARALLEL 1/0.

flags to target simulations on large-scale systems, such as a

supercomputer and parallel I/O.

IV. RESULTS

We first evaluate the Docker-HT performance varying the
number of computing nodes, from four to 512, using the
default and advanced configurations. Figure |3| shows the total
Docker-HT execution time, the relative (to four-node per-
formance) parallel speed-up, and efficiency. The Docker-HT
execution time on four nodes is for the default and advanced
configuration time is 3,882 and 4,071 seconds, respectively.
The default configuration exhibits better performance than
the advanced configuration for a small number of nodes. On
512 nodes, the advanced configuration outperforms the default
configuration with an execution time of 35 seconds vs. 43

seconds.

The relative parallel efficiency on 512 nodes is 72% and
90% for the default and advanced configuration, respectively.
We find that the default I/O configuration performs better than
the advanced configuration when using less than 64 nodes. In
particular, the advanced configuration performs poorly when
running on 16 and 32 nodes with a parallel efficiency of 71%
and 85%. On the contrary, the default configuration exhibits a

parallel efficiency of 91% and 90% on 16 and 32 nodes.

To understand the difference of Docker-HT performance
given in two I/O configurations, we investigate first the
I/O performance by instrumenting Docker-HT and extracting
bandwidth, read/written data size, and the execution time
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Fig. 3. Docker-HT execution time, relative parallel speed-up and efficiency
varying the number of nodes.

spent in I/0. We first focus on the reading operation of the
ligand file occurring at the beginning of the high-throughput
molecular docking operation. We show the performance for the
reading operation in Figure @ The maximum read bandwidth
we recorded is 6.7 GiB/s on 16 nodes in the advanced
configuration. The minimum read bandwidth occurs when
running on 64 nodes: 1.2 GiB/s and 1.4 GiB/s for the default
and advanced configuration. As a reference, the highest read
bandwidth, obtained with the IOR benchmark [10] on four
nodes of the Beskow system reading from a shared file, is
4.1 GiB/s. The most interesting plot in Figure []is the amount
of the read data: in both configurations, the size of the read
data increases linearly with the number of nodes with the
increase rate determined by the read buffer size. With a large
read buffer size of 20 MiB (as in the default configuration), the
amount of the read data on 512 nodes is 30 GBi (roughly 15
times the size of the input ligand data set). With a smaller read
buffer size of one MiB (as in the advanced configuration), the
read data on 512 nodes is 2.7 GBi (roughly 25% more than the
size of the input ligand data set). The total time for Docker-HT
reading operations is largely due to the size of the read data.
A configuration with a read buffer size of one MiB is always
faster than a configuration with 20 MiB (default configuration)
in all our experiments (see the rightmost panel in Figure {4)).

We note that poor scalability of Docker-HT in the default
configuration is in part due to the read operation and, in
particular, to the oversized read buffer of 20 MiB: on 512
nodes, the read operation takes 6.3 seconds, approximately
15% of the total execution time. In the advanced configuration,
the reading time accounts for 4% of the whole execution time.

To further understand the impact of I/O on high-throughput
molecular docking, we investigate the I/O performance of
parallel writing of the ligand score to a shared file. In all
our experiments, the size of written data is constant, as the
number of ligands is constant and equal to 182 MiB. Figure
[ shows the write bandwidth and time for the default and
advanced configuration. The maximum write bandwidth is 1.4
and 1.3 GBi/s achieved on 32 and 128 nodes in the default
configuration with one writer and a queue size of one. The
minimum bandwidth is 128 MBi/s on 512 nodes with the
advanced configuration with 14 parallel I/O writers.

For reference, the maximum write bandwidth obtained with
IOR [10] running on four nodes of the Beskow system is

Read Bandwidth

e~ Default Configuration
7000 == Advanced Configuration

3 «10°Transferred Data Read Time

-e—Default Configuration
5 —— Advanced Configuration|

-e-Default Configuration
—— Advanced Configuration

~

=)

@
76000 E
Q = 2 @5
S 5000 g 2
< [a] £4
£ 4000 15 =
£ 3000 5 B
7 1 4
0 2000 é 2

i

1000

100 200 300 400 500
Number of Nodes

100 200 300 400 500
Number of Nodes

100 200 300 400 500
Number of Nodes
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1.6 GBi/s. For more than 64 nodes, the default configuration
with one parallel writer leads to higher bandwidth and faster
execution time than simulation with advanced configuration.
On 512 nodes, the parallel write operations take 0.7 and 1.41
seconds in the default and advanced configuration, respec-
tively. Interestingly, the default configuration exhibits higher
parallel write performance than the advanced configuration
in terms of bandwidth and execution time. These results are
expected as the default configuration has a larger write buffer
size, leading to an increased usage of the available bandwidth
and reduced write operations. However, these results do not
explain the increased scalability of the advanced I/O config-
uration and the poor parallel efficiency on 16 and 32 nodes
with the advanced configuration (see Figure [3).

To gain more insight into the impact of I/O on the
whole high-throughput molecular docking performance, we
investigate the Docker-HT performance variation in time and
correlate with the times the parallel write operations occur.
Figure [6] shows the moving average of per-node performance
evolution in time for the default (black dots) and advanced
(red dots) configurations. Different dots at a given time
represent the performance on different nodes: the dot spread
represents a performance variation across the nodes. To help
correlate Docker-HT performance with the write operation,
we superimpose black and red circles to denote the time the
write operations occur in the simulation. On 512 nodes, the
average per-node performance of the advanced configuration
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is approximately 13% higher than the performance with the
default configuration. This result is due to the pipelining of
molecular docking and I/O operations and parallel writers (the
advanced configuration uses a queue length of 20,000 and 14
parallel writers). We note that the performance variation across
nodes is larger in the advanced configuration. A performance
drop occurs when a write operation is performed (the circles
are vertically aligned with the performance drops). Writes are
synchronizing operations and lead to a performance drop. The
performance drop is more drastic in the case of advanced
configuration, up to a maximum of 20%.

To investigate the poor parallel efficiency and identify the
problem with the advanced configuration on 16 and 32 nodes,
we study the per-node performance moving average for this
configuration on 16 nodes, as presented in Figure [/| In this
picture, the red dots and circles represent the performance
of the default configuration. It is clear from inspecting the
plot that the per-node performance drops by 50% when write
operation occurs. However, the main reason for the poor
parallel efficiency is the final phase of the high-throughput
molecular docking starting after approximately 1,000 seconds.
This poor behavior is due to the unbalance between the writer
groups’ size. In particular, with 16 nodes and 14 writers, we
have 12 writing groups composed of one node and two groups
consisting of two nodes. Since the accumulation buffer on each
node is equal to the Write Buffer Size divided by the group
size, we have four nodes with an accumulation buffer that is
half of the others, but the node’s throughput is similar. Thus,
the two groups with two nodes will fill the accumulation buffer
and initiate the write operation earlier than the other groups.
Once the writing stage queue is complete, the whole node will
be idle until the other groups join the writing process since it
involves synchronization calls between the writers.

V. RELATED WORK

Several approaches and tools have been designed for
performing molecular docking on HPC systems [11]-[13].
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AutoDock4 [[14] and AutoDock Vina [14] are among the most
used tools for molecular docking. These tools use OpenMP for
multithreaded molecular docking on a single node. Autodock
has also port to use accelerator with OpenCL [15]], Nvidia
CUDA [3] and OpenACC [16], [17]. VinaMPI is an MPI
wrapper of Autodock Vina to use MPI on extreme scale
supercomputers [[18]. VinaLC [[19] is another Autodock Vina
extension to use MPI and large supercomputers. In this work,
we use the Docker-HT code and focus on I/O performance
and impact of high-throughput molecular-docking.

VI. DISCUSSION AND CONCLUSION

This paper investigated the I/O performance and impact
on an HPC high-throughput molecular-docking code, called
Docker-HT. High-throughput molecular-docking is a data-
intensive application stressing the I/O system for reading many
ligands and writing the score information for each ligand
to a shared file. We showed that parallel read performance
considerably depends on the read buffer size. On 512 nodes,
a reduced read buffer size of 1 MBi led to a significant
improvement in reading execution time. When investigating
the write performance, we noted that the default /O con-
figuration (one parallel writer and queue size equal to one)
exhibits better I/O performance in terms of bandwidth and time
spent in writing than the advanced configuration. To assess the
overall impact of I/0, we traced the high-throughput molecular
docking performance. We found that while the usage of large
queue size and several parallel writers showed worse 1/O
performance, it led instead to a better overall application
performance as it provided increased parallelism. We plan to
extend this study to large input data sets and systems with
accelerators as future work.
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