
New Challenges of Benchmarking All-Flash
Storage for HPC

Glenn K. Lockwood, Alberto Chiusole, Nicholas J. Wright
National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory
Berkeley, CA, USA

{glock,chiusole,njwright}@lbl.gov

Abstract—The proliferation of extreme-scale analytics and AI
have motivated new parallel storage systems that use flash and
storage class memory (SCM) exclusively to achieve the best
attributes of both media, and such storage systems have clear
relevance in HPC. We present a preliminary evaluation of one
such exemplar system from VAST Data, which incorporates SCM
and QLC flash in a single namespace, to quantify the benefit of
such architectures. We show that traditional I/O performance
measurement techniques struggle to properly characterize all-
flash storage systems because they were designed to test much
simpler storage systems, and we propose alternative methods to
better reflect the performance that real workflows can expect.

I. INTRODUCTION

The inclusion of solid-state storage media technologies–
including NAND flash and 3D XPoint–in HPC storage sub-
systems has been underway for the last decade. The earliest
flash-enabled HPC systems incorporated hundreds of terabytes
of enterprise SATA SSDs in 2011 [1] to provide higher
IOPS and bandwidth per-device over hard disk drive (HDD)
storage. Petabyte burst buffers built on NVMe SSDs followed
in 2015 [2]–[4], delivering increased performance owing to
the significant performance gain from attaching SSDs directly
to hosts’ PCIe buses. Burst buffers also included advances
in software design; the relative scarcity of flash brought
dynamically schedulable and user-defined high-performance
storage into HPC [5], [6]. Falling flash prices are leading
the HPC industry to begin deploying all-flash storage which
provides users with the performance of a burst buffer and
the usability of a single namespace–with no requirement to
explicitly stage data to account for tiered storage [7].

A new generation of flash-native storage systems is now
being developed, including Intel DAOS [8] and VAST Uni-
versal Storage [9]. Both DAOS and VAST rely on combining
3D XPoint storage class memory (SCM) and low-endurance,
high-capacity quad-level cell (QLC) flash to deliver the low
write latency and high endurance of SCM and the low read la-
tency and economical capacity of QLC as a single namespace.
This tiered SCM/QLC architecture is showing great promise
to date; for example, DAOS has shown significantly higher
performance on metadata operations and misaligned I/Os than
traditional parallel file systems [10].

Large HPC systems have historically defined I/O perfor-
mance along only two dimensions: peak bulk-synchronous
I/O bandwidth and metadata rates. One might assume that

since SSDs can also deliver exceptional IOPS relative to
HDDs, peak bulk-synchronous random I/O rates should also
be a new dimension of performance. However, this is not an
actual workload relevant to HPC, since few applications issue
random synchronous I/O to achieve scientific ends [11]. Bulk-
synchronous I/O rates are also not representative of what most
users observe because they emulate a full-system compute job
performing a bulk-synchronous checkpoint or restart in the
absence of interfering I/O workloads, and they almost always
test the read performance of recently written data.

Actual I/O performance is often lower for many reasons.
For example, most HPC systems run many jobs concurrently
which individually occupy only a subset of all compute
nodes [12]. Many emerging workloads in artificial intelli-
gence [13], [14], genomics [15], and experimental high-energy
physics [16], [17] also access data in a way that does not map
to the large, well-aligned stripes in which parallel file systems
arrange data. Only recently has the parallel I/O community
(notably, the IO-500 effort [18]) acknowledged that high
throughput with such non-contiguous I/Os is important to
scientific computing. User expectations are also evolving with
the increase of interactivity arising from new user interfaces
like Jupyter [19] and data sources such as experimental detec-
tors [16], [20]–[24], resulting in tail latency and responsiveness
becoming key measures of I/O performance.

Thus, the I/O performance analysis community must evolve
to meet the challenges of new technologies and new usage
modalities. In this work, we explore these challenges by
demonstrating how traditional I/O benchmarking approaches
misrepresent the performance users should actually expect
from such next-generation SCM/QLC storage systems. In
doing so, we present several approaches to develop a more
comprehensive understanding of HPC storage system perfor-
mance that better reflects both the strengths of next-generation
all-flash file systems and what user workloads should expect.

II. TEST METHODOLOGY

We chose to use VAST Data’s storage system as an exemplar
of next-generation all-flash storage systems. Fig. 1 illustrates
the architecture of this system which is composed of two
types of servers, “DNodes” and “CNodes.” DNodes host the
file system’s SCM and SSDs through directly attached PCIe
but otherwise do little beyond projecting bare drives over the



NVMe fabric using NVMe over Fabrics (NVMeoF). CNodes
bridge the client-facing network and VAST’s internal NVMe
fabric, and most of VAST’s data path logic is implemented
within these servers.

CNodes are stateless and rely exclusively on transactionally
consistent data structures on remote SCM and flash to store
user data and metadata. The data path is designed such that
all incoming writes are synchronously replicated to SCM and
organized into multi-gigabyte stripes based on their similarity
to existing data and expected lifetime. Asynchronously, when
a stripe has completely filled, it is compressed and migrated to
QLC drives by CNodes. The details of this data path are further
described elsewhere [9], but suffice it to say that this hybrid
SCM/QLC data path complicates performance analysis, and in
this work we specifically examine the effects of the following
advanced architectural features on performance.

Network erasure coding – Extreme-scale storage systems
are turning to synchronous replication and erasure coding
(EC) between servers to improve resilience over larger fail-
ure domains. Replication and EC use distributed transactions
though, and these use extra network hops and bandwidth
to ensure synchronous data consistency. It is important to
evaluate whether these extra hops and data placement logic
impact random I/O performance.

Hybrid SCM and QLC flash – The use of small quantities
of high-durability SCM backed by large quantities of low-
endurance QLC flash promises the random write and metadata
performance of SCM at the economics of high-capacity flash.
This tiered media scheme complicates performance analysis
because the client has no indication whether data accesses are
being served by SCM or QLC, and benchmarks may follow a
data path that real user data and applications do not.

High-performance data reduction – AI is breathing new
life into old scientific datasets and motivates the need for high-
performance storage at capacities that exceed what has been
driven solely by advances in processing performance [21]–
[24]. This makes high-performance data reduction (e.g., fast or
hardware-accelerated compression algorithms, deduplication,
or similarity-based reduction) integral to delivering affordable,
extreme-scale all-flash storage. That said, data reduction is
orthogonal, if not opposite, to high-performance I/O, and we
must examine the implications of sophisticated similarity-
based reduction and compression on performance and bench-
marking methodologies.

A. Test Platform

In this study, we used a VAST system comprised of eight
CNodes and two DNodes as depicted in Fig. 1. Each CNode
was connected to the client-facing network using one 100G
EDR InfiniBand connection, and the two DNodes provided
44× Intel D5-P4326 15.36 TB QLC SSDs and 12× Intel
DC P4800X 1.5 TB Optane SSDs total. We used up to eight
clients each with two Intel Xeon Gold 6148 CPUs, 384 GiB
of DRAM, and four 100G EDR InfiniBand HCAs. Clients
connected to VAST CNodes using VAST’s implementation of
NFS over RDMA with nconnect and multipathing enabled.

PCIe switches

100Gb Eth

NVMeoF
(ROCE)

CNode

CNode

CNode

CNode

CNode

CNode

CNode

CNode

DNode

DNode

EDR
InfiniBand
(RDMA)

GPU node

GPU node

GPU node

GPU node

GPU node

GPU node

GPU node

GPU node

3DXP QLC

PCIe Gen3PCIe Gen3

3DXP 
x6

QLC 
x22

PCIe Gen3

3DXP 
x6

QLC 
x22

Fig. 1. High-level architecture of VAST system used in this study. GPU nodes
were used as clients, and more detail can be found in Sec. II-A. Each DNode
serves 6 SCM and 22 QLC drives each, and DNode pair supports failover.

B. Performance Datasets

To measure I/O bandwidth we used the IOR benchmark
to generate parallel sequential read and write I/O work-
loads. Writes ran for at least 45 seconds using stonewalling
with wear-out to ensure that all processes performed the
same amount of I/O, and the benchmark walltime in-
cluded the slowest process as would happen with a syn-
chronous checkpoint/restart operation. We used 1, 2, 4 and
8 clients (N = {1, 2, 4, 8}) and 1, 2, 4, 8 and 16 pro-
cesses per node (p = {1, 2, 4, 8, 16} for both reads and
writes. In addition, we ran tests for multiple transfer sizes
t = {4 KiB, 512 KiB, 1 MiB, 4 MiB, 8 MiB, 32 MiB}. Each
combination of (N , p, t, and access–read or write) was run
five times for a total of 1,200 individual bandwidth tests.

We also used IOR to measure random access rates. As with
bandwidth tests, all I/O was file-per-process and stonewalling
was used to ensure write test ran for at least 45 seconds, but
wear-out was not used since our goal was to test system-
level performance rather than emulate a checkpoint/restart
operation. Random read tests were performed against a large,
pre-generated 27 TiB, 1024-file dataset that was specifically
created such that read IOPS tests would run for at least 45
seconds without reaching end of file. We ran tests using
the same values of N and p used for bandwidth tests, but
t = 4 KiB and accesses were at random, 4 KiB-aligned, non-
repeating offsets. Each combination of N and p was run five
times for reads and writes for a total of 200 measurements.

In all read tests, all files were read from a different client
than the one that generated it to avoid client read caches, and
write tests were followed by an explicit fsync(2) which
was included in the I/O time.

III. SEQUENTIAL I/O PERFORMANCE

A. Measuring Bandwidth Naı̈vely

We initially measured bandwidth using the standard ap-
proach of writing a large dataset, shifting MPI ranks by p to
ensure reads did not hit client cache, and immediately reading
it back. Fig. 2 shows the read and write bandwidths as a
function of concurrency, averaged over all combinations of
N × p and t.

The file system shows read bandwidths increasing without
saturation with increasing concurrency as one would expect



1 2 4 8 16 32 64 128
Number of Processes (N × p)

0

10

20

Ba
nd

wi
dt

h 
(G

iB
/s

)
Read Bandwidth
Read CV

Write Bandwidth
Write CV

0.0
0.2
0.4
0.6
0.8
1.0

Coefficient of Variation

Fig. 2. Mean bandwidths of all bandwidth tests and accompanying coeffi-
cients of variation. Each x value contains all measurements that were taken
using any values of (N , p, t) that produced the given total process count x.

from a parallel file system. Notably though, this scalability is
achieved using an NFS client which has historically delivered
very poor I/O performance due to its inability to perform
parallel I/O. This data demonstrates that advancements in NFS
such as multipathing (which allow the use of multiple network
links between client and server), nconnect (which allow par-
allel data transfers between client and server), and NFS over
RDMA allow NFS to achieve high bandwidth. Furthermore,
the stateless nature of VAST CNodes allows clients to perform
I/O to multiple CNodes concurrently without having to request
file layout information as would be required by pNFS [25].

Figure 2 also shows the coefficient of variation (CV), and
bearing in mind that each value of x (= N ×p) is the average
over six different transfer sizes t and multiple combinations of
N , p, we see that the storage system delivers very consistent
bandwidth regardless of I/O size. For writes, we attribute this
to NFS’s ability to aggressively coalesce and asynchronously
issue I/O. All data layout decisions are delegated to CNodes
because VAST clients use NFS, and the extent to which writes
can be coalesced into an RPC is not constrained by how a
file’s contents are mapped to remote storage servers. Relatedly,
NFS’s read-ahead is efficient since any VAST CNode can
service any read request without locality effects. Consistent,
high performance for many values of p and t is also a
characteristic the Optane SCM to which all writes are issued
in VAST [26].

Write bandwidth is lower than read bandwidth though. This
is unsurprising since incoming writes are synchronously repli-
cated to two SCM drives, a common technique that avoids the
read-modify-write penalties intrinsic to synchronous erasure
coding but consumes twice as much write bandwidth [27].
We also expect that the metadata associated with similarity-
based data placement and reduction specific to VAST incurs
overheads on write bandwidth that do not apply to reads, and
other SCM/QLC storage systems that synchronously inject
logic to facilitate intelligent tiering will show similar per-
formance asymmetry. Reducing write bandwidth to increase
IOPS complements AI workloads which are biased towards
performing random reads [13], but this tradeoff may not suit
all HPC workload mixes. For example, NERSC workloads
average a 1.75:1 read:write ratio to its scratch file system [28]
which is lower than the 5:1 ratio demonstrated in Fig. 2.

This gap between write and read performance could be

narrowed toward this 1.75:1 ratio in principle. Adding more
SCM would amortize the replication overhead, and adding
more CNodes would provide additional resources to address
the metadata overheads of incoming writes. Naı̈vely, adding
3× more SCM drives but reducing the per-drive capacity
could reduce the read:write performance ratio to as low as
1.67:1 without adding unnecessary SCM capacity and cost.
This is very speculative, but VAST’s disaggregated architecture
is conceptually amenable to such changes.

B. Effects of Hybrid SCM/QLC

Like hybrid storage systems that combine SSD and HDD,
hybrid SCM/QLC storage systems asynchronously migrate
data from high-performance SCM to high-capacity flash over
time. Unlike SSD/HDD systems though, accessing long-lived
data from the QLC layer is faster since both SCM and QLC
deliver comparable read bandwidth but QLC provides the
majority of the capacity.1 For example, the VAST system
used in this work reserved ≈ 3 TB of SCM across 12
drives for incoming writes, providing 30 GB/s of theoretical
aggregate read bandwidth for newly written data. Its QLC
layer (to which user data is never directly written) provides
more capacity (608 TB) and theoretical read bandwidth (140
GB/s) owing to using almost 4 × more drives (44 SSDs). It
follows that these hybrid SCM/flash architectures complicate
benchmarking because newly generated data resides on the
lower-bandwidth SCM tier, and read performance actually
increases as data ages and is migrated to QLC.

As a result of this, the read bandwidth presented in Fig. 2
is misleading since it was measured using data that had been
written seconds before. This left the majority of the data being
read in SCM, not QLC, and read performance was limited
by the bandwidth of 12 SCM drives. To make our read tests
more realistic, we re-ran all 1,200 write and read tests by first
performing all 600 write tests and preserving their outputs,
resulting in 275 TiB of data being written and retained on the
file system. We then artificially aged this dataset by writing 8
TiB of throw-away data to the file system to ensure that any
remnants of our 275 TiB dataset still resident in the SCM write
buffer would be migrated to QLC. After this artificial aging
of our dataset, we ran the 600 read tests against it, and Fig. 3
demonstrates the resulting performance increase observed.

By simply reordering our synthetic benchmarks to avoid
unrealistic streaming read-after-write I/O, we see over 50%
higher read bandwidth when accessing our aged dataset at
higher concurrencies (e.g., N × p = 32). This is significant
because we estimate that virtually all data read from large-
scale HPC environments will target data that qualifies as
being aged and therefore be read from QLC flash, not SCM.
For example, the 35 PB all-NVMe Lustre file system on
NERSC’s Perlmutter supercomputer was designed to sustain a
production workload of 2.2 PB of writes per day [29]. Given
VAST’s ratio of SCM write buffer to QLC capacity of ≈

1Intel data sheets rate the read performance of DC P4800X Optane SSDs
at 2,500 MB/s and 3,200 MB/s for D5-P4326 QLC SSDs.



1 2 4 8 16 32 64 128
Number of Processes (N × p)

0
5

10
15
20
25
30

M
ea

n 
Re

ad
Ba

nd
wi

dt
h 

(G
iB

/s
) Naïve dataset

Aged dataset

Fig. 3. Difference in read bandwidth measured from reading a newly
generated dataset that resides on SCM (naı̈ve; same data as Fig. 2) and an
aged dataset that has been migrated to QLC media. Error bars signify one
standard deviation.

1:200, a comparably sized VAST file system would turn over
its ≈ 173 TB SCM write buffer every 113 minutes. Thus, we
estimate that any data read more than two hours after it was
first generated would qualify as aged.

Because VAST also employs data reduction based on
global similarity in its SCM/QLC tiering, we had to extend
IOR to generate fine-grained pseudorandom data using the
golden ratio primes algorithm implemented in the elbencho
benchmark2. Without high-entropy data, we observed written
datasets compressing into narrow stripes that fit on a small
subset of the QLC SSDs, limiting our read performance to
much fewer than 44 QLC drives. Because scientific data is
only modestly compressible [30], we expect real-world read
performance to resemble our aged dataset in Fig. 3 rather than
the highly compressible, lower-performance naı̈ve dataset.

From this, we posit that most real-world read activity will
target aged data, and most data will be only modestly com-
pressible and therefore striped across many QLC drives. Thus,
the naı̈ve read bandwidth measurements shown in Figs 2 and
3, despite being measured in the de facto standard approach,
understate the true read bandwidth that users will experience.
This highlights the importance of increasing the sophistication
of bandwidth testing on hybrid SCM/QLC storage systems to
better match the access patterns, re-access times, and entropy
that true scientific applications use.

IV. RANDOM I/O PERFORMANCE

A. Measuring IOPS Naı̈vely

Two extremes of I/O access patterns are fully sequential
and fully random, and the performance at these extremes is
measured in terms of bandwidth (as discussed above) and
I/O operations per second (IOPS), respectively. Benchmarking
random access performance on parallel file systems typically
involves writing and reading3 4 KiB data at random offsets
across many files to measure random access performance in
the absence of complicating factors such as lock contention.
Fig. 4 summarizes the results of such a test on our file system
as measured using both the default client behavior (NFS client

2elbencho. https://github.com/breuner/elbencho/. Accessed Aug. 20, 2021.
3Following the conclusions of Section III-B, random reads were measured

using a dataset of randomized data that was artificially aged to ensure its
residence on QLC.

0
40
80

120
160 With Client Cache

1 client, read
2 clients, read
4 clients, read
8 clients, read

1 client, write
2 clients, write
4 clients, write
8 clients, write

1 2 4 8 16 32 64 128
Number of Processes (N × p)

0
40
80

120
160 Direct IOkI

OP
S

Fig. 4. Distribution of measured IOPS as a function of parallel I/O processes.
Error bars signify one standard deviation.

write-back caching and read-ahead enabled) and O_DIRECT
to disable write-back caching.

Fig. 4 shows that random read rate is insensitive to different
N for a given x on VAST; for example, the system will deliver
similar aggregate performance to a single node randomly
reading from eight cores and eight single-threaded random
readers across eight nodes. However, the random read rate
does not approach any obvious saturation point with increasing
N × p, indicating that we lacked enough concurrency to drive
the full random read rate of the storage system.

Random write performance exhibits wider variation for dif-
ferent ratios of N and p (and even within the same N , p) when
client cache is enabled. Also unlike random reads, random
write performance also appears to saturate at the highest
process counts which is a result of the entire benchmark being
limited by write-back cache rate. Because VAST is able to
achieve high write bandwidth independent of transfer size (as
indicated by the low CV in Fig. 2) and its clients have no
notion of data locality, this random write workload can be
aggressively cached and coalesced into larger I/O operations.

Disabling write-back client caching using O_DIRECT sig-
nificantly reduces the effective operation rate for random
writes. The scaling of unbuffered random writes resembles
random reads; it is insensitive to different combinations of N
and p for any given N × p and never approaches saturation,
indicating that the file system is capable of delivering more
aggregate random writes than we could drive with eight clients.
This disparity in apparent random write performance begs
the question: which approach to benchmarking random writes
results in a representative performance measurement?

B. Quantifying Nonsequential I/O Performance

Few HPC applications perform completely random
writes [11], and this pattern is limited to few scientific
use cases such as out-of-core sorting and data processing
applications that update database-like files at unpredictable
offsets. Because these random-write-heavy applications target
write-only output files, the read-after-write consistency of

https://github.com/breuner/elbencho/


O_DIRECT is rarely required. We consider this I/O pattern
realistic only where an application performs random writes
that are not page-aligned and the close-to-open consistency
of NFS could result in inconsistent data in the absence of
O_DIRECT. Because unbuffered random writing is such an
adversarial I/O pattern, applications that rely on it historically
experienced poor performance which has disincentivized its
use in practice. On this basis, we arrive at the following
conclusions for measuring random write performance:

• To benchmark application-level random I/O performance,
we should enable client write-back caching since most
applications would not require O_DIRECT when output
is written nonsequentially and benefit from write-back.

• To benchmark system-level random I/O performance, we
should use O_DIRECT since it allows clients to force the
file system to touch blocks in an unpredictable fashion.
This approximates the aggregate workload of many users
performing uncoordinated I/O across a large HPC system
irrespective of their use of client write-back caching.

Random reads are more common among statistical analy-
ses which sample large datasets such as AI training work-
loads [13], [31]. As demonstrated in Fig. 4 though, page cache
has negligible effect on benchmarking random reads and the
above corollaries need not be considered. However, hybrid
SCM/QLC systems complicate performance analysis of real
analysis workflows since the random read rate they deliver
depends on the fraction of a dataset resides on the SCM layer.

Consider a workflow that copies a dataset from an external
source to a high-performance file system before immediately
reading it as part of an AI training step. Because the dataset is
randomly read immediately after it has been copied to the file
system, it would not have aged, and only a fraction of it will
have been migrated to QLC and demonstrate the random read
performance of that media. We approximate this workflow by
generating a dataset through sequential writes, then reading
that dataset randomly to quantify how the apparent random
read performance varies with the size of the dataset. Because
VAST does not provide any way to determine how files
are split between SCM and QLC, we approximate different
degrees of SCM/QLC occupancy by generating datasets with
fixed sizes and assuming that larger fractions of them will be
resident on QLC as they approach the 3 TB SCM buffer size.
The results of this test are shown in Fig. 5.

Fig. 4 showed that this 64-process random read workload
should achieve 52 KIOPS when 100% of the dataset resides
on QLC. Fig. 5 shows that the actual read IOPS rate can be up
to 3× faster if the dataset has not been fully migrated to QLC
because SCM requires less concurrency to drive random read
rates [26]. This highlights a fundamental challenge of setting
expectations for workloads that perform random reads: the
I/O performance an application should expect can vary by 3×
based on the locality of the data being accessed. In turn, this
locality can be a function of many complex factors including
age, as discussed in Section III-B; in this specific case of an
Optane and QLC hybrid storage solution, aged datasets deliver

200 400 600 800 1000
Working Set Size (GiB)

0

50

100

150

Re
ad

 R
at

e 
(K

IO
PS

)

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Working Set Size / SCM Buffer Size

0

1

2

3

Sp
ee

du
p 

ov
er

10
0%

 Q
LC

67.0 KIOPS

158.3 KIOPS

Fig. 5. Variation in observed random read IOPS as a function of the total
dataset size being read. SCM buffer size is 3 TB, and a dataset that is 100%
resident on QLC can achieve 52 KIOPS. Error bars signify one standard
deviation calculated from five measurements.

higher read bandwidth at larger scales but lower read IOPS at
smaller scales. Thus, as the data path includes more logic to
facilitate transparent data placement, predicting performance
becomes more difficult.

V. CONCLUSION

Hybrid SCM/QLC storage systems deliver new dimensions
of performance beyond bandwidth-intensive checkpoint/restart
workloads, but this flexibility comes with new challenges
in performance analysis. Benchmarks must be designed to
accurately reflect user behavior; for example, reading aged
data results in higher sequential but lower random performance
due to uneven SCM:QLC ratios. Combining SCM and QLC
also provides more read than write bandwidth overall which
suits analytics at scale, but traditional HPC workloads may
require the write performance of a more SCM-rich design.
We have also shown that VAST specifically delivers high
performance despite its use of NFS, and NFS’s lack of locality
awareness actually allows applications to make better use
write-back and readahead to deliver high bandwidth at all I/O
sizes. Although these conclusions were drawn from VAST, it
is likely that many also apply to similar hybrid SCM/QLC
storage systems such as DAOS.

ACKNOWLEDGMENT

The authors would like to thank Sven Breuner, Jeff Den-
worth, and Howard Marks for key insights into the behav-
ior of the VAST Universal Storage system and many staff
at VAST Data for ongoing support and expertise. We also
thank the anonymous reviewers for constructive feedback in
improving the quality of this work. This material is based
upon work supported by the U.S. Department of Energy,
Office of Science, under contract DE-AC02-05CH11231. This
research used resources and data generated from resources of
the National Energy Research Scientific Computing Center, a
DOE Office of Science User Facility supported by the Office
of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.



REFERENCES

[1] M. L. Norman and A. Snavely, “Accelerating data-intensive science
with Gordon and Dash,” in Proceedings of the 2010 TeraGrid
Conference, 2010, pp. 1–7. [Online]. Available: http://portal.acm.org/
citation.cfm?doid=1838574.1838588

[2] B. Hadri, S. Kortas, S. Feki, R. Khurram, and G. Newby, “Overview
of the KAUST’s Cray X40 System - Shaheen II,” in Proceedings of the
2015 Cray User Group, 2015.

[3] W. Bhimji, D. Bard, M. Romanus, D. Paul, A. Ovsyannikov, B. Friesen,
M. Bryson, J. Correa, G. K. Lockwood, V. Tsulaia, S. Byna, S. Farrell,
D. Gursoy, C. S. Daley, V. Beckner, B. V. Straalen, D. Trebotich, C. Tull,
G. Weber, N. J. Wright, K. Antypas, and Prabhat, “Accelerating Science
with the NERSC Burst Buffer Early User Program,” in Proceedings of
the 2016 Cray User Group, London, 2016. [Online]. Available: https:
//cug.org/proceedings/cug2016 proceedings/includes/files/pap162.pdf

[4] K. S. Hemmert, M. W. Glass, S. D. Hammond, R. Hoekstra, M. Rajan,
M. Vigil, D. Grunau, J. Lujan, D. Morton, H. A. Nam, P. Peltz, A. Torrez,
C. Wright, and S. Dawson, “Trinity: Architecture and Early Experience,”
in Proceedings of the 2017 Cray User Group, 2017.

[5] D. Henseler, B. Landsteiner, D. Petesch, C. Wright, and N. J. Wright,
“Architecture and Design of Cray DataWarp,” in Proceedings of the
2016 Cray User Group, London, 2016. [Online]. Available: https:
//cug.org/proceedings/cug2016 proceedings/includes/files/pap105.pdf

[6] M. Richerson, “DataWarp Transparent Cache: Data Path
Implementation,” in Proceedings of the 2018 Cray User Group, 2018.
[Online]. Available: https://cug.org/proceedings/cug2018 proceedings/
includes/files/pap156s2-file1.pdf

[7] G. K. Lockwood, A. Chiusole, L. Gerhardt, K. Lozinskiy, D. Paul,
and N. J. Wright, “Architecture and Performance of Perlmutter’s 35 PB
ClusterStor E1000 All-Flash File System,” in Proceedings of the 2021
Cray User Group, 2021.

[8] Z. Liang, J. Lombardi, M. Chaarawi, and M. Hennecke, “DAOS: A
Scale-Out High Performance Storage Stack for Storage Class Memory,”
in Supercomputing Frontiers, D. K. Panda, Ed. Cham: Springer
International Publishing, 2020, pp. 40–54.

[9] “Universal Storage Explained,” 2021. [Online]. Available: https:
//vastdata.com/whitepaper

[10] A. Dilger, D. Hildebrand, J. Kunkel, J. Lofstead, and G. Markomanolis,
“IO500 ISC21 Lists,” Jul. 2021. [Online]. Available: https://doi.org/10.
5281/zenodo.5171694

[11] S. Saini, J. Rappleye, J. Chang, D. Barker, P. Mehrotra, and R. Biswas,
“I/O performance characterization of Lustre and NASA applications on
Pleiades,” in 2012 19th International Conference on High Performance
Computing, 2012, pp. 1–10.

[12] O. Yildiz, M. Dorier, S. Ibrahim, R. Ross, and G. Antoniu, “On
the Root Causes of Cross-Application I/O Interference in HPC
Storage Systems,” in 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, may 2016, pp. 750–759.
[Online]. Available: http://ieeexplore.ieee.org/document/7516071/

[13] S. W. D. Chien, S. Markidis, C. P. Sishtla, L. Santos, P. Herman,
S. Narasimhamurthy, and E. Laure, “Characterizing Deep-Learning
I/O Workloads in TensorFlow,” in 2018 IEEE/ACM 3rd International
Workshop on Parallel Data Storage & Data Intensive Scalable
Computing Systems (PDSW-DISCS). IEEE, nov 2018, pp. 54–63.
[Online]. Available: https://ieeexplore.ieee.org/document/8638422/

[14] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips,
A. Mahesh, M. Matheson, J. Deslippe, M. Fatica, P. Prabhat, and
M. Houston, “Exascale Deep Learning for Climate Analytics,” in
SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, nov 2018, pp. 649–660.
[Online]. Available: https://ieeexplore.ieee.org/document/8665799/

[15] K. A. Standish, T. M. Carland, G. K. Lockwood, W. Pfeiffer, M. Tatineni,
C. C. Huang, S. Lamberth, Y. Cherkas, C. Brodmerkel, E. Jaeger,
L. Smith, G. Rajagopal, M. E. Curran, and N. J. Schork, “Group-based
variant calling leveraging next-generation supercomputing for large-
scale whole-genome sequencing studies,” BMC Bioinformatics, vol. 16,
no. 1, p. 304, dec 2015. [Online]. Available: http://dx.doi.org/10.1186/
s12859-015-0736-4http://www.biomedcentral.com/1471-2105/16/304

[16] W. D. Pence, L. Chiappetti, C. G. Page, R. A. Shaw, and E. Stobie,
“Definition of the Flexible Image Transport System (FITS), version 3.0,”
Astronomy & Astrophysics, vol. 524, no. 10, p. A42, dec 2010. [Online].
Available: http://www.aanda.org/10.1051/0004-6361/201015362

[17] W. Bhimji, D. Bard, K. Burleigh, C. S. Daley, S. Farrell,
M. Fasel, B. Friesen, L. Gerhardt, J. Liu, P. Nugent, D. Paul,
J. Porter, and V. Tsulaia, “Extreme I/O on HPC for HEP using
the Burst Buffer at NERSC,” Journal of Physics: Conference
Series, vol. 898, p. 082015, oct 2017. [Online]. Available: https:
//iopscience.iop.org/article/10.1088/1742-6596/898/8/082015

[18] N. Monnier, J. F. Lofstead, M. Lawson, and M. Curry, “Profiling
Platform Storage Using IO500 and Mistral,” in IEEE/ACM Fourth
International Parallel Data Systems Workshop, PDSW@SC 2019,
Denver, CO, USA, November 18, 2019. IEEE, 2019, pp. 60–73.
[Online]. Available: https://doi.org/10.1109/PDSW49588.2019.00011

[19] T. Robinson, “Challenges in Providing an Interactive Service
with Jupyter on Large-Scale HPC Systems,” in Proceed-
ings of the 2019 Cray User Group, Montreal, 2019.
[Online]. Available: https://cug.org/proceedings/protected/cug2019{ }
proceedings/includes/files/pres104s1.pdf

[20] T. Declerck, K. Antypas, D. Bard, W. Bhimji, S. Canon, S. Cholia, and
Y. H. He, “Cori - A System to Support Data-Intensive Computing,” in
Proceedings of the 2016 Cray User Group, London, 2016. [Online].
Available: https://cug.org/proceedings/cug2016{ }proceedings/includes/
files/pap171s2-file2.pdf

[21] A. Piccione, J. Berkery, S. Sabbagh, and Y. Andreopoulos, “Physics-
guided machine learning approaches to predict the ideal stability
properties of fusion plasmas,” Nuclear Fusion, vol. 60, no. 4,
p. 046033, mar 2020. [Online]. Available: https://doi.org/10.1088/
1741-4326/ab7597

[22] A. Pau, A. Fanni, S. Carcangiu, B. Cannas, G. Sias, A. Murari,
and F. R. and, “A machine learning approach based on generative
topographic mapping for disruption prevention and avoidance at JET,”
Nuclear Fusion, vol. 59, no. 10, p. 106017, aug 2019. [Online].
Available: https://doi.org/10.1088/1741-4326/ab2ea9

[23] X. Huang, C. Storfer, A. Gu, V. Ravi, A. Pilon, W. Sheu,
R. Venguswamy, S. Banka, A. Dey, M. Landriau, D. Lang, A. Meisner,
J. Moustakas, A. D. Myers, R. Sajith, E. F. Schlafly, and D. J. Schlegel,
“Discovering New Strong Gravitational Lenses in the DESI Legacy
Imaging Surveys,” The Astrophysical Journal, vol. 909, no. 1, p. 27, mar
2021. [Online]. Available: https://doi.org/10.3847/1538-4357/abd62b

[24] M. Arratia, “Jet-based TMD measurements with H1 data,”
in Proceedings of the XXVIII International Workshop on
Deep-Inelastic Scattering and Related Subjects, Stony Brook,
NY, 2021. [Online]. Available: https://www-h1.desy.de/h1/www/
publications/htmlsplit/H1prelim-21-031.long.html

[25] D. Hildebrand and P. Honeyman, “Exporting storage systems in a
scalable manner with pNFS,” in 22nd IEEE / 13th NASA Goddard
Conference on Mass Storage Systems and Technologies (MSST’05),
2005, pp. 18–27.

[26] J. Yang, B. Li, and D. J. Lilja, “Exploring Performance Characteristics
of the Optane 3D Xpoint Storage Technology,” ACM Transactions
on Modeling and Performance Evaluation of Computing Systems,
vol. 5, no. 1, pp. 1–28, feb 2020. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3372783

[27] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson, “DiskReduce: Repli-
cation as a Prelude to Erasure Coding in Data-Intensive Scalable
Computing,” 2011.

[28] T. Patel, S. Byna, G. K. Lockwood, and D. Tiwari, “Revisiting
I/O behavior in large-scale storage systems,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. New York, NY, USA: ACM, nov 2019, pp. 1–13.
[Online]. Available: http://dl.acm.org/doi/10.1145/3295500.3356183

[29] G. K. Lockwood, K. Lozinskiy, L. Gerhardt, R. Cheema, D. Hazen, and
N. J. Wright, “A Quantitative Approach to Architecting All-Flash Lustre
File Systems,” ser. Lecture Notes in Computer Science, M. Weiland,
G. Juckeland, S. Alam, and H. Jagode, Eds. Cham: Springer
International Publishing, 2019, vol. 11887, pp. 183–197. [Online].
Available: http://link.springer.com/10.1007/978-3-030-34356-9 16

[30] J. M. Kunkel, “Analyzing Data Properties Using Statistical Sampling
Techniques – Illustrated on Scientific File Formats and Compression
Features,” in Supercomputing Frontiers and Innovations, 2016, vol. 3,
no. 3, pp. 130–141. [Online]. Available: http://link.springer.com/10.
1007/978-3-319-46079-6 10

[31] S. W. D. Chien, A. Podobas, I. B. Peng, and S. Markidis, “tf-Darshan:
Understanding Fine-grained I/O Performance in Machine Learning
Workloads,” in 2020 IEEE International Conference on Cluster Com-
puting (CLUSTER), 2020, pp. 359–370.

http://portal.acm.org/citation.cfm?doid=1838574.1838588
http://portal.acm.org/citation.cfm?doid=1838574.1838588
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap162.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap162.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap105.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap105.pdf
https://cug.org/proceedings/cug2018_proceedings/includes/files/pap156s2-file1.pdf
https://cug.org/proceedings/cug2018_proceedings/includes/files/pap156s2-file1.pdf
https://vastdata.com/whitepaper
https://vastdata.com/whitepaper
https://doi.org/10.5281/zenodo.5171694
https://doi.org/10.5281/zenodo.5171694
http://ieeexplore.ieee.org/document/7516071/
https://ieeexplore.ieee.org/document/8638422/
https://ieeexplore.ieee.org/document/8665799/
http://dx.doi.org/10.1186/s12859-015-0736-4 http://www.biomedcentral.com/1471-2105/16/304
http://dx.doi.org/10.1186/s12859-015-0736-4 http://www.biomedcentral.com/1471-2105/16/304
http://www.aanda.org/10.1051/0004-6361/201015362
https://iopscience.iop.org/article/10.1088/1742-6596/898/8/082015
https://iopscience.iop.org/article/10.1088/1742-6596/898/8/082015
https://doi.org/10.1109/PDSW49588.2019.00011
https://cug.org/proceedings/protected/cug2019{_}proceedings/includes/files/pres104s1.pdf
https://cug.org/proceedings/protected/cug2019{_}proceedings/includes/files/pres104s1.pdf
https://cug.org/proceedings/cug2016{_}proceedings/includes/files/pap171s2-file2.pdf
https://cug.org/proceedings/cug2016{_}proceedings/includes/files/pap171s2-file2.pdf
https://doi.org/10.1088/1741-4326/ab7597
https://doi.org/10.1088/1741-4326/ab7597
https://doi.org/10.1088/1741-4326/ab2ea9
https://doi.org/10.3847/1538-4357/abd62b
https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-21-031.long.html
https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-21-031.long.html
https://dl.acm.org/doi/10.1145/3372783
https://dl.acm.org/doi/10.1145/3372783
http://dl.acm.org/doi/10.1145/3295500.3356183
http://link.springer.com/10.1007/978-3-030-34356-9_16
http://link.springer.com/10.1007/978-3-319-46079-6_10
http://link.springer.com/10.1007/978-3-319-46079-6_10


APPENDIX

A. Test System Description

The VAST system used in this study was a standard
VAST LightSpeed appliance in a ”2x1” configuration with
two “CBoxes” (8 CNodes) and one “DBox” (2 DNodes). Each
VAST CNode is configured with

• 2x Intel Xeon Silver 4216 CPUs
• 8x 32 GiB DDR4-2400
• 1x 100G EDR InfiniBand to client fabric
• 4x 50G Ethernet to NVMe fabric

Each VAST DNode is configured with
• 2x Intel Xeon E5-2630 v4
• 8x 8 GiB DDR4-2133
• 4x 100G Ethernet to NVMe fabric
CNodes and DNodes were connected via the NVMe fabric

comprised of two Mellanox SN2100 100 GbE switches used
exclusively by VAST for NVMe I/O. The VAST cluster
itself was running version 3.4.0-sp6-367205 which dictates the
versions and configurations of its operating system.

All clients were Cray CS-Storm 500NX nodes each with
• 2x Intel Xeon Gold 6148 (Skylake) CPUs
• 8x NVIDIA Tesla V100 GPUs (not used here)
• 12x 32 GiB DDR4-2666
• 4x 100G EDR InfiniBand ports to VAST
Each client mounted VAST using the VAST NFS-over-

RDMA driver version 3.7.7 and connected to all 32 vir-
tual IPs (remoteports) using all four 100G EDR HCAs
(localports) of the VAST cluster using nconnect=32.
Clients were configured such that maximum RPC size for
both reads and writes was 1048576 bytes, and the thresh-
old to begin writing back dirty pages was 10% of system
memory (dirty_background_ratio=10) and writes
blocked when dirty pages exceeded 20% of system memory
(dirty_ratio=20).

B. IOR Test Configurations

All experiments were carried out using two different ver-
sions of IOR. All bandwidth tests used a derivative of the
IOR’s development branch forked from commit a436395
and extended to include a new data packet type with ran-
domized (nominally incompressible) contents (hereafter “ior-
incompress”).4 All IOPS tests used a derivative of IOR version
3.3.0 that incorporated one minor error-handling bug patch
(hereafter “ior-3.3.0+6356464”).5

Table I describes the arguments used for each test presented.
Of note, we universally used

• -C - Ensure that each process does not read the same file
that it wrote. Effectively pointless for these runs since we
read and write in separate IOR jobs and dropped client
caches at the start of each IOR invocation through Slurm.

4Available online: https://github.com/glennklockwood/ior/commit/
e1208a6f52e9946a073a1583154ca29dd1621903. Accessed April 9, 2021.

5Available online: https://github.com/glennklockwood/ior/commit/
635464630c232ff17afa1fc04d47a88ec070a19c. Accessed May 17, 2021.

• -D 45 - Use stonewalling and stop issuing reads or
writes I/O after 45 seconds.

• -F - Write and read from one file for each MPI process.
• -e - Call fsync(2) after the write phase to flush

dirty pages and include this time in the I/O time. The
combination of -D 45 and -e results in actual write
times taking longer due to the time required to flush dirty
pages.

• -g - Use barriers between open, write, read, and close
phases. This has no effect on performance measurements
but was included to avoid potential issues that may have
arisen from the loose metadata consistency semantics of
NFS clients.

All bandwidth tests also used -O
stoneWallingWearOut=1 to require all read and
write processes to move equal numbers of bytes and “catch
up” to the fastest writer or reader before the bandwidth timer
was stopped. blockSize (-b) and transferSize (-t)
were varied, and segmentCount (-s) was defined so each
process would attempt to read/write the lesser of 16 TiB or
2,147,483,647 segments in the absence of stonewalling (-D),
and the exact transfer sizes (t) are described in Sec. II.

All non-naı̈ve read tests were performed against pre-
generated datasets generated using the parameters described in
the “Generate” step in Table I. These datasets were generated
by writing datasets using -O stoneWallingWearOut=1
to limit the computational cost of this process while ensuring
all files comprising each dataset had equal size and could be
read without unexpected end-of-file errors during the subse-
quent read tests. Following the generate step, SCM was flushed
during a “Pre-Read” step by writing and deleting 1 TiB of
“random” data eight times in sequence using 1 MiB sequential
transfers in 1 MiB blocks. Following generate and pre-read
steps, read tests were performed on the generated dataset.

C. Performance Summaries

As described in Sec. II-B, each unique combination of N ,
p, t, and read/write was run five times to establish a basis for
statistical significance. We report the standard deviation for
these five measurements to this end, but we acknowledge that
not all measurements to which this technique was applied are
expected to be normally distributed.

These tests were all run on a non-production file system
of which we were the exclusive user, and we observed
that these measurements typically approached the “speed of
light” of the underlying clients and/or storage system. This
behavior, absent of the interference present on production
systems, would be better modeled as a right-skewed gamma
distribution than a normal distribution. However we lacked
the resources to rigorously model the asymmetry of these
performance distributions in this preliminary study and instead
used the mean and standard deviation of all samples presented
to approximate a 68% confidence interval. Thus, reproducing
this study precisely requires that this approximation (that
performance measurements are normally distributed in all
samples) be made.

https://github.com/glennklockwood/ior/commit/e1208a6f52e9946a073a1583154ca29dd1621903
https://github.com/glennklockwood/ior/commit/e1208a6f52e9946a073a1583154ca29dd1621903
https://github.com/glennklockwood/ior/commit/635464630c232ff17afa1fc04d47a88ec070a19c.
https://github.com/glennklockwood/ior/commit/635464630c232ff17afa1fc04d47a88ec070a19c.


TABLE I
IOR ARGUMENTS USED

Dataset IOR version Step Arguments

Bandwidth, Naı̈ve ior-incompress Write –stoneWallingWearOut=1 -C -D=45 -F -e -g -k -vv -w
Bandwidth, Naı̈ve ior-incompress Read –stoneWallingWearOut=1 -C -D=45 -F -e -g -r -vv
Bandwidth, Aged ior-incompress Write –stoneWallingWearOut=1 -C -D=45 -F -e -g -k -l=random -vv -w
Bandwidth, Aged ior-incompress Read –stoneWallingWearOut=1 -C -D=45 -F -e -g -l=random -r -vv
IOPS, Buffered I/O ior-3.3.0+6356464 Write -C -D=45 -F -e -g -vv -w -z
IOPS, Buffered I/O ior-incompress Generate –stoneWallingWearOut=1 -D=600 -F -k -l=random -vv -w
IOPS, Buffered I/O ior-3.3.0+6356464 Read -C -D=45 -F -e -g -k -r -vv -z
IOPS, Direct I/O ior-3.3.0+6356464 Write –posix.odirect -C -D=45 -F -e -g -vv -w -z
IOPS, Direct I/O ior-incompress Generate –stoneWallingWearOut=1 -D=600 -F -k -l=random -vv -w
IOPS, Direct I/O ior-3.3.0+6356464 Read –posix.odirect -C -D=45 -F -e -g -k -r -vv -z
IOPS vs. Size ior-incompress Generate -C -D=300 -F -k -l=random -vv -w
IOPS vs. Size ior-3.3.0+6356464 Read -C -D=45 -F -g -r -vv -z
All Non-Naı̈ve ior-incompress Pre-Read -C -F -e -g -l=random -vv -w


	Introduction
	Test Methodology
	Test Platform
	Performance Datasets

	Sequential I/O Performance
	Measuring Bandwidth Naïvely
	Effects of Hybrid SCM/QLC

	Random I/O Performance
	Measuring IOPS Naïvely
	Quantifying Nonsequential I/O Performance

	Conclusion
	References
	Appendix
	Test System Description
	IOR Test Configurations
	Performance Summaries


