
Sink or Swim: How not to drown
in (colossal) streams of data?

Nitin Agrawal
ThoughtSpot

“Colossal” streams of data

4 TB /car /day
x 100s thousands cars

10 TB /data center /day
x 10s data centers

20 GB /home /day
x 100s thousands homes

10 MB /device /day
x millions devices

2

“Colossal” streams of data

Hundreds of TB to PB /day

3

4 TB /car /day
x 100s thousands cars

10 TB /data center /day
x 10s data centers

20 GB /home /day
x 100s thousands homes

10 MB /device /day
x millions devices

Applications with “colossal” data

4

Need to support timely analytics
Analyses
▹ Forecast
▹ Recommend
▹ Detect outliers
▹ Telemetry
▹ Route planning

Applications with “colossal” data

Analyses
▹ Forecast
▹ Recommend
▹ Detect outliers
▹ Telemetry
▹ Route planning

5

Need to support timely analytics
 IoT Applications
▹ Occupancy sensing
▹ Energy monitoring
▹ Safety and care
▹ Surveillance
▹ Industrial automation

Applications with “colossal” data
Current solutions

6

 In-memory analytics systems

 Conventional (storage) systems

Applications with “colossal” data
Current solutions

7

 In-memory analytics systems
▹ Interactive latency, but $$$$
▹ Need secondary system for persistence

 Conventional (storage) systems

DRAM “volatility”

8

DRAM “volatility”

9

Applications with “colossal” data
Current solutions

10

 In-memory analytics systems
▹ Interactive latency, but $$$$
▹ Need secondary system for persistence

 Conventional (storage) systems
▹ High latency
▹ Still quite resource intensive

11

 Improved dramatically over the years
 But, still a bottleneck…

I/O performance not keeping up

Disk read performance (spec)

Random IOPS (4K)
HDD: 61
SSD: 400K

Sequential (MBps)
HDD: 250
SSD: 3400

Price
HDD: $0.035/GB
SSD: $0.5/GB

12

 Query performance (spec)

I/O performance not keeping up

1 GB 1 TB
Random
HDD 1 hr 48 days
SSD 0.6 secs 11 mins
Sequential
HDD 4 secs 1 hr
SSD 0.3 secs 5 mins

Drowning in data
 Continuous data generation on significant rise
▹ From sensors, smart devices, servers, vehicles, …
▹ Analyses require timely responses
▹ Overwhelms ingest and processing capability

 Conventional storage systems can’t cope with data growth
▹ Designed for general-purpose querying not analyses
▹ Store all data for posterity; required capacity grows linearly
▹ Administered storage expensive relative to disks

13

Sink or Swim?

14

How not to drown?

 Democratizing storage
▹ No one size fits all, store what the application needs.

 Democratizing discovery
▹ Intuitive interfaces for end-users to engage with data.

15

How not to drown: democratizing storage!
 Revisiting design assumptions around data
▹ Data streams unlike tax returns, family photos, documents
▹ Consumed by analytics not human readers
▹ Embracing approximate storage - not all data equally valuable for analyses

 Applications designed with uncertainty and incompleteness
▹ Many care about answer “quality” and timeliness, not solely precision

 Could store all data and lazily approximate at query time
▹ Slow: ingest and post-processing takes time
▹ Expensive: system needs to be provisioned for all ingested data

16

How not to drown: democratizing discovery!
Human-centric interfaces to data
▹ End users not always experts in query formulation.
▹ Embracing natural language querying and searching.

 Custom data-centric applications without significant effort
▹ End users not necessarily have deep programming expertise.
▹ Empower writing new applications with low/no software development.

17

 Proactively summarize data in persistent storage
▹ Fast: queries need to run on a fraction of data
 Summaries provide additional speedup
▹ Cheap: system provisioned only for approximated data
 Capacity grows sub-linearly or logarithmically with data
▹ Maximize utilization of administered storage and compute

 Caveats and limitations of approximate storage
▹ Effectiveness depends on target analyses
▹ Interesting research questions!

18

Embracing approximate storage

Preview: potential gains with SummaryStore
 SummaryStore: approximate store for “colossal” time-series data
 Key observation: in time-series analyses
▹ Newer data is typically more important than older
▹ Can get away with approximating older data more

 In real applications (forecasting, outlier analysis, ...) and microbenchmarks:

scale 1 PB on single node
(compacted 100x)

latency < 1s at 95th %ile

error < 10% at 95th %ile
Forecasting

10x compaction
< 0.1% error

20

Challenges in building approximate storage
 Ensuring answer quality
▹ Provide high quality answers under aggressive approx.
▹ Quantify answer quality and errors

 Ensuring query generality
▹ Enable analyses to perform acceptably given approx. scheme
▹ Handle workloads at odds with approx. (e.g., outliers)

 Reducing developer burden
▹ App developers not statisticians; abstractions to incorporate imprecision
▹ Counter design assumptions across layers of storage stack

Applications with “colossal” data streams

 In-memory analytics systems
▹ Interactive latency, but $$$$
▹ Need secondary system for persistence

 Conventional time-series stores
▹ High latency, still quite expensive

 Approximate data stores?
▹ Promising reduction in cost & latency
▹ Current approx storage systems not viable for data streams

Current solutions

21

Goal: build a low-cost, low-latency
store for stream analytics

Goal: build a low-cost, low-latency
approximate store for stream analytics

Key insight
 We make the following observation:

 Spotify, SoundCloud Time-decayed weights in song recommender

 Facebook EdgeRank Time-decayed weights in newsfeed recommender

 Twitter Observability Archive data past an age threshold at lower resolution

 Smart-home apps Decaying weights in e.g. HVAC control, energy monitor

existing stores are oblivious, hence costly and slow
many stream analyses favor newer data over older

 Examples:

24

SummaryStore: approximate store for stream analytics

bi

ts
al

lo
ca

te
d

datum age

25

Allocates fewer bits to older data than new:
each datum decays over time

Approximates data leveraging observation that
analyses favor newer data

 Our system, SummaryStore*

 *Low-Latency Analytics on Colossal Data Streams with SummaryStore, Nitin Agrawal, Ashish Vulimiri. SOSP ’17.

Example decay policy: halve number of bits each day

26

32-bit value
arrives

32

1
6 8

4 2 1 ½ ¼

bi

ts
al

lo
ca

te
d

Time

SummaryStore: approximate store for stream analytics
 Our system, SummaryStore

Allocates fewer bits to older data than new:
each datum decays over time

Time-decayed stream approximation
through windowed
summarization
Stream

of values
newest
element

older data

27

Time-decayed stream approximation

Group values in windows

through windowed
summarization

newestoldest

28

Time-decayed stream approximation

Group values in windows. Discard raw data

through windowed
summarization

newestoldest

29

Sum, Count

64 bits

Sum, Count

64 bits

Sum, Count

64 bits

Sum, Count

64 bits

Time-decayed stream approximation

Group values in windows. Discard raw data, keep only window summaries
▹ e.g. Sum, Count, Histogram, Bloom filter, ...
▹ Each window is given same storage footprint

through windowed
summarization

Sum, Count

64 bits

newestoldest

30

Time-decayed stream approximation

Group values in windows. Discard raw data, keep only window summaries
▹ e.g. Sum, Count, Histogram, Bloom filter, ...
▹ Each window is given same storage footprint

To achieve decay, use longer timespan windows over older data

through windowed
summarization

Sum, Count Sum, Count S,C S,C S,C

64 bits 64 bits 64b 64b 64

newestoldest

16 vals = 4 bits/value

= 32 bits/value
2 v

31

Challenge: processing writes

 Don’t have raw values, only window summaries (Bloom filters)
 How do we “move” v4, v6 between windows?

32

room for one
more value

Configuration:
Window lengths
 1, 2, 4, 8,
Each window has
 Bloom filter

v7

v6v4 v5v1 v1 v2 v3

4 2 1
oldest newest

Bloom Filter BF BF

v7v5 v6v1 v2 v3 v4

4 2 1
oldest newest

Bloom Filter BF BF

Ingest algorithm
 Not possible to actually move values

 Instead, use a different technique,
 building on work by Cohen & Wang†

▹ Ingest new values into new windows

▹Periodically compact data by merging
consecutive windows
▹ Merge all summary data structures

v1..................v12

v1...............v8 v9...v12merge

Bloom Filter : bitwise OR

Count : add

Histogram : combine & rebin

merge operation for

etc

bitwise OR

1000-bit
Bloom Filter

1000-bit
Bloom Filter

1000-bit
Bloom Filter

† E. Cohen, J. Wang, “Maintaining time-decaying
 stream aggregates”, J. Alg. 2006

Challenge: time-range queries

T1 T2

 Examples
▹ What was average energy usage in Sep 2015?
▹ Fetch a random (time-decayed) sample over the last 1 year

Oldest Newest

34

query a summary over
the time-range [T1, T2]

Challenge: time-range queries

T1 T2
Oldest Newest

35

 Time-ranges are allowed to be arbitrary, need not be window-aligned

query a summary over
the time-range [T1, T2]

Challenge: time-range queries

T1 T2

only know count in
entire window

 Time-ranges are allowed to be arbitrary, need not be window-aligned

Oldest Newest

36

don’t know precise
count in sub-intervals

what was count in
the time-range [T1, T2]

Challenge: time-range queries

T1 T2

 Time-ranges are allowed to be arbitrary, need not be window-aligned
 Lack of window alignment introduces error

 We use novel low-overhead statistical techniques to estimate
answer & confidence interval

only know count in
entire window

Oldest Newest

37

don’t know precise
count in sub-intervals

what was count in
the time-range [T1, T2]

Query accuracy

 Age = how far back in time query goes
▹ Lower age ⇒ more recent data, so better accuracy

 Length = time-span query covers
▹ Longer length ⇒ more windows spanned, so better

 Not suited for large age + small length
▹ e.g. query over the time range

 [10 years ago, 10 years ago + 3 seconds]

✓ ✓ ✓

✓ ✓ ⎯

✓ ⎯ ✕

Length Age

T
1

T2Oldest Newest

38

Evaluation
 On a single node: 224 GB RAM, 10 x 1 TB disk

 Microbenchmarks: 1 PB on single node

 Real applications
▹ Forecasting
▹ Outlier analysis
▹ Analyzing network traffic and data backup logs

39

Time-series forecasting w/ Prophet
 Prophet: open-source forecasting library from Facebook

 Tested three datasets
▹ WIKI: visit counts for Wikipedia pages
▹ NOAA: global surface temperature readings
▹ ECON: log of US economic indicators

 On each time-series in each dataset, compared forecast accuracy of
▹ Model trained on all data
▹ Model trained on time-decayed sample of data

40

Time-series forecasting w/ Prophet

10x compaction
< 0.1% error

41

Time-series forecasting w/ Prophet
ECON WIKI

NOAA

42

Time-series forecasting w/ Prophet
ECON WIKI

NOAA

43

difference not as stark
because of
predictable dataset

substantial
improvement

More details in paper
 Landmarks

 Ingest algorithm

 System design

 System configuration

 Statistical techniques for sub-window queries
44

Landmarks
Mechanism for protecting specific values from decay

Values declared as landmarks are
▹ Always stored at full resolution
▹ Seamlessly combined with decayed data when answering queries

Example application: outlier analysis

Oldest Newest

LandmarkLandmark

45

Limitations
Choice of summaries needs to be defined a-priori at stream creation
Criteria for ”landmarks” also defined a-priori
▹ Scope of high-level analytics limited by the selection

Configuring rate of decay left to application
▹ Hard to estimate impact on individual query errors
▹ How aggressively can an application compact?

New summary operators can be added but require some effort
▹ Need to specify union function & model for error estimation

46

SummaryStore: approximate store for stream analytics

 Contributions
▹ Abstraction: time-decayed summaries + landmarks
▹ Data ingest mechanism
▹ Low-overhead statistical techniques bounding query error

 Works well in real applications and microbenchmarks:
▹ 10-100x compaction, warm-cache latency < 1s, low error
▹ 1 PB on a single node (summarized to 10 TB)

 Project details and papers at https: bit.do summarystore

47

Conclusions
 Data streams everywhere, and growing
▹ Variety of analytics and learning apps require timely answers

 Storage systems need orders of scaling to handle data growth
▹ Conventional approaches to scale up and scale out insufficient
▹ Conventional access paradigms increasingly insufficient

 Broader research agenda around approximate computing
▹ Programming languages, architecture, user interaction, developer tools

 New paradigms for data discovery and application development
▹ Human-centric interfaces to data siloed in storage systems

48
 Thanks!

