\" 20 PDSW 2020:5TH INTERNATIO

Fingerprinting the Checker
Policies of Parallel File Systems

Runzhou Han, Duo Zhang, Mai Zheng

IOWA STATE
UNIVERSITY

Parallel File Systems (PFSes)

* PFS is the cornerstone of high performance computing
* Optimized for highly concurrent access

Lustre <i ® (rangerS panasas .
GFS B

Spectrum

PFS Failures: Real-World Cases

Thursday, September 1, 2016 at 9:10:12 AM Central Daylight Time

Subject: Update: HPCC Power Outage
Date: Monday, January 11, 2016 at 8:50:17 AM Central Standard Time
From: HPCC - Support

Attachments: image001.png, image003.png

TEXAS TECH UNIVERSITY

?g Information Technology Division

High Performance Computing Center

To All HPCC Customers and Partners,

As we have informed you earlier, the Experimental Sciences Building experienced a major power outage
Sunday, Jan. 3 and another set of outages Tuesday, Jan. 5 that occurred while file systems were being
recovered from the first outage. As a result, there were major losses of important parts of the file systems for
the work, scratch and certain experimental group special Lustre areas.

The HPCC staff have been working continuously since these events on recovery procedures to try to restore
as much as possible of the affected file systems. These procedures are extremely time-consuming, taking
days to complete in some cases. Although about a third of the affected file systems have been recovered,
work continues on this effort and no time estimate is possible at present.

User home areas have been recovered successfully. At present, no user logins are being permitted while
recovery efforts proceed on the remaining Lustre areas. Your understanding and patience are appreciated.

If you have questions, please contact us at hpccsupport@ttu.edu or 806-742-4350. Thanks.

Sincerely,
HPCC Staff

Casel: HPCC Power QOutage

PFS Failures: Real-World Cases

Thursday, September 1, 2016 at 9:10:12 AM Central Daylight Time

Subject: Update: HPCC Power Outage
Date: Monday, January 11, 2016 at 8:50:17 AM Central Standard Time
From: HPCC - Support

Attachments: image001.png, image003.png

TEXAS TECH UNIVERSITY

1@ Information Technology Division

High Performance Computing Center

To All HPCC Customers and Partners,

As we have informed you earlier, the Experimental Sciences Building experienced a major power outage
Sunday, Jan. 3 and another set of outages Tuesday, Jan. 5 that occurred while file systems were being
recovered from the first outage. As a result, there were major losses of important parts of the file systems for
the work, scratch and certain experimental group special Lustre areas.

The HPCC staff have been working continuously since these events on recovery procedures to try to restore
as much as possible of the affected file systems. These procedures are extremely time-consuming, taking
days to complete in some cases. Although about a third of the affected file systems have been recovered,
work continues on this effort and no time estimate is possible at present.

User home areas have been recovered successfully. At present, no user logins are being permitted while
recovery efforts proceed on the remaining Lustre areas. Your understanding and patience are appreciated.

If you have questions, please contact us at hpccsupport@ttu.edu or 806-742-4350. Thanks.

Sincerely,
HPCC Staff

Casel: HPCC Power Outage

The graph below offers a vivid example of how bad things got at a prestigious American university?
which suffered frequent HPC storage outages and took several days to get their systems back up
and running. Recovery experienced at this university® is shown in the graph below with additional
detail available via the link in the footnote. It shows an outage that started on a Monday and wasn't
fully recovered from until Sunday. -

GPFS Disk Utilization
100
90
80
70 i
60
50
40 |] J
30 w8
20

% Utilization

Mon Tue Wed Thu Fri Sat Sun

Case2: ACCRE Storage Outage*

* Hyperion Research survey of HPC organizations done for Panasas

PFS Failures: More Frequent/Expensive Than You Thought

Some statistics*:

The average HPC
storage system failure
frequency is

9.8 failures/year

=half

of HPC sites
experience storage
system failures
1/month or more
frequently

* Hyperion Research survey of HPC organizations done for Panasas

PFS Failures

Some statistics*:

The average HPC
storage system failure
frequency is

9.8 failures/year

~half

of HPC sites
experience storage
system failures
1/month or more
frequently

: More Frequent/Expensive Than You Thought

Downtime ranges from

1 day. to 1 week+

40+

of HPC sites typically took
more than 2 weeks to restore
their storage systems

* Hyperion Research survey of HPC organizations done for Panasas

PFS Failures

Some statistics*:

The average HPC
storage system failure
frequency is

9.8 failures/year

=half

of HPC sites
experience storage
system failures
1/month or more
frequently

: More Frequent/Expensive Than You Thought

Downtime ranges from

1 day. to 1 week+

40+

of HPC sites typically took
more than 2 weeks to restore
their storage systems

* Hyperion Research survey of HPC organizations done for Panasas

A single day of downtime
costs from

S100K, to S1IM+

Average downtime cost is

$127K/day

PFS & PFS Checkers (FSCKs)

e Typical PFS architecture

v

Network< Management Metadata Object Storage
Server (MGS) Server (MDS) Servers (OSSes)
| | | |
Management Metadata = &= Object Storage S=»
Target (MGT) Target (MDT) s S=———= Targets (OSTs) ===

PFS & PFS Checkers (FSCKs)

e Typical PFS architecture

Network <

Management Metadata Object Storage
Server (MGS) Server (MDS) Servers (OSSes)
Management Metadata S=—— PFS checker =—— Object Storage ===

Target (MGT) Target (MDT) s === Targets (OSTs) ===

* Many PFSes are designed with a checker component
e e.g., LFSCK for Lustre, BeeGFS-FSCK for BeeGFS, PV2FS-FSCK for OrangeFS

: <l &
Lustre - ¢rangeFs

PFS & PFS Checkers (FSCKs)

e Typical PFS architecture

Network< Management Metadata Object Storage
Server (MGS) Server (MDS) Servers (OSSes)
I | | |
Management Metadata =% PFS checker &&= Object Storage ==
Target (MGT) Target (MDT) s ESCK === Targets (OSTs) ===

\osgen 1o e

* Many PFSes are designed with a checker component
e e.g., LFSCK for Lustre, BeeGFS-FSCK for BeeGFS, PV2FS-FSCK for OrangeFS

* Detect and repair inconsistencies | |stre "L;y ¢rangeFs

PFS & PFS Checkers (FSCKs)

Typical PFS architecture

Network< Management Metadata Object Storage
Server (MGS) Server (MDS) Servers (OSSes)
| ! I
Management Metadata PFS checker Object Storage
Target (MGT) Target (MDT) Targets (OSTs)

(FSCK

)
\Qugcy o) o
'@‘J

* Many PFSes are designed with a checker component

e e.g., LFSCK for Lustre, BeeGFS-FSCK for BeeGFS, PV2FS-FSCK for OrangeFS
* Detect and repair inconsistencies | ystre’ <’

GFS’
* FSCKs have predefined checker policies

@rangeFS

10

Examples of PFS Checker Policies

* Lustre’s LFSCK Policy: mapping between MDT-object and OST-object
 MDT-object’s LOV EA matches to OST-object’s FID
e OST-object’s Parent FID matches to MDT-object’s FID

MDT OST
, Structures Meaning
MDT- \ e xattr OST- xattr inode extended attribute
objects FID P > FID data objects _
A _,><_ L FID a global ID of an Lustre object
FID LOV EA stores child object’s FID

W W Parent FID stores parent object’s FID

Examples of PFS Checker Policies

* Lustre’s LFSCK Policy: mapping between MDT-object and OST-object
 MDT-object’s LOV EA matches to OST-object’s FID
e OST-object’s Parent FID matches to MDT-object’s FID

MDT OST
, Structures Meaning
MDT- \ e xattr OST- xattr inode extended attribute
objects FID P > FID data objects _
A _,><_ L FID a global ID of an Lustre object
FID LOV EA stores child object’s FID
W W— Parent FID stores parent object’s FID

Examples of PFS Checker Policies

* Lustre’s LFSCK Policy: mapping between MDT-object and OST-object
 MDT-object’s LOV EA matches to OST-object’s FID
e OST-object’s Parent FID matches to MDT-object’s FID

MDT OST
, Structures Meaning
\ il OST- Xattr inode extended attribute
objects FID data objects]
A >< L FID a global ID of an Lustre object
FID LOV EA stores child object’s FID
W W Parent FID stores parent object’s FID

Examples of PFS Checker Policies

* Lustre’s LFSCK Policy: mapping between MDT-object and OST-object
 MDT-object’s LOV EA matches to OST-object’s FID
e OST-object’s Parent FID matches to MDT-object’s FID

MDT OST
, Structures Meaning
\ I x:t;r l'\ I ’:t;r OST- xattr inode extended attribute
objects data objects]
TG EA _,><_ S FID a global ID of an Lustre object
FID LOV EA stores child object’s FID
W W Parent FID stores parent object’s FID

Examples of PFS Checker Policies

* Lustre’s LFSCK Policy: mapping between MDT-object and OST-object
 MDT-object’s LOV EA matches to OST-object’s FID
e OST-object’s Parent FID matches to MDT-object’s FID

MDT OST
, Structures Meaning
\ s OST- Xattr inode extended attribute
objects FID objects]
A FID a global ID of an Lustre object
LOV EA stores child object’s FID
W W Parent FID stores parent object’s FID

Examples of PFS Checker Policies

* Lustre’s LFSCK Policy: mapping between MDT-object and OST-object
 MDT-object’s LOV EA matches to OST-object’s FID
e OST-object’s Parent FID matches to MDT-object’s FID

MDT OST
, Structures Meaning
MDT- \ e xattr OST- xattr inode extended attribute
objects FID | FID data objects]
OV EA o FID a global ID of an Lustre object
FID LOV EA stores child object’s FID
W W Parent FID stores parent object’s FID

Examples of PFS Checker Policies

* Lustre’s LFSCK Policy: mapping between MDT-object and OST-object

4

Corruption 1

e OST-object’s Parent FID matches to MDT-object’s FID

MDT OST
, Structures Meaning
MDT- \ e xattr OST- xattr inode extended attribute
biect FID -1 FID biect _
one - \ data oniecs FID a global ID of an Lustre object
corruption | | Parent
FID LOV EA stores child object’s FID
W W Parent FID stores parent object’s FID

Examples of PFS Checker Policies

* Lustre’s LFSCK Policy: mapping between MDT-object and OST-object

e OST-object’s Parent FID matches to MDT-object’s FID

MDT OST
, Structures Meaning
MDT- e xattr OST- xattr inode extended attribute
biect FID — > FID biect _
one _,>< data onle FID a global ID of an Lustre object
| | Parent
FID LOV EA stores child object’s FID
W W Parent FID stores parent object’s FID

Examples of PFS Checker Policies

* Lustre’s LFSCK Policy: mapping between MDT-object and OST-object
 MDT-object’s LOV EA matches to OST-object’s FID

Corruption 2 ! ' !

MDT OST
, Structures Meaning
\ s OST- xattr inode extended attribute
objects FID objects]
A FID a global ID of an Lustre object
LOV EA stores child object’s FID
W W Parent FID stores parent object’s FID

19

Examples of PFS Checker Policies

* Lustre’s LFSCK Policy: mapping between MDT-object and OST-object
 MDT-object’s LOV EA matches to OST-object’s FID

Corruption 2 : ject Cannot be fixed!
MDT OST
, Structures Meaning
\ e N xattrx OST- xattr inode extended attribute
objects FID LBkt FID data objects :
ovER | T FID a global ID of an Lustre object
FID LOV EA stores child object’s FID

W W Parent FID stores parent object’s FID

Examples of PFS Checker Policies

* Lustre’s LFSCK Policy: mapping between MDT-object and OST-object
 MDT-object’s LOV EA matches to OST-object’s FID

Corruption 2 =—OST-objeetsParentHb-matchestoMbT-object’'sHDP Cannot be fixed!

LFSCK’s policy is incomplete!

o ata .
LOV EA FID a global ID of an Lustre object

| | Parent

FID LOV EA stores child object’s FID

DTS JEEE) OST-object a Parent FID stores parent object’s FID

Our Contributions

* A systematic approach to analyze PFS checker policies
* PFS type-aware fault injection
* PFS consistency model & taxonomy

Our Contributions

* A systematic approach to analyze PFS checker policies
* PFS type-aware fault injection
* PFS consistency model & taxonomy

* A comprehensive study on the checkers of two widely used PFSes

Lustre’ <’
GFS’

* Has exposed 33 suboptimal repairs
* Has exposed 2 abnormal behaviors ,,g,bw"amcb"d'c“e HEVEW
(e.g., kernel panic), which has led to

Change 40058 - Needs Code-Review

1 neW patch On Lustre LU-13980 osd: remove osd_object release LASSERT

23

Outline

Motivation & C T

* Methodology

* PFS type-aware fault injection
* Fault models

* PFS consistency model

* PFS checker taxonomy

* Experimental Result
e Conclusion & Future Work

PFS Type-aware Fault Injection

* Why type-aware fault injection

* Key observation
* PFS metadata and the local file system metadata are closely correlated
* E.g., Both Lustre and BeeGFS has metadata structures stored in inode extended attribute (xattr)

PFS name metadata structures in xattr shared metadata structures with Ext4 inode
Lustre FID, LOV EA, parent FID, linkEA nlink
BeeGFS fhgfs nlink, size

* Benefits of fine-grained fault injection
* reveal PFS checker policies precisely
* Enable analyzing the contract between PFS checker and local FS

Fault Models

* Four fault models to capture the typical corruptions that may occur in
the local storage stack and be exposed to the PFS checker

* junk, out-of-sync, zero, duplicate

Fault Models

* Four fault models to capture the typical corruptions that may occur in
the local storage stack and be exposed to the PFS checker

* junk, out-of-sync, zero, duplicate

* Fault model #1: junk

* Bytes of the on-disk structure are replaced by random values
e Caused by disk corruptions, local FS bugs, etc

seore ot IR EN NN EN

ateer faute | N I N N N N

27

Fault Models

* Fault model #2: out-of-sync

* In-memory copy of the structure is inconsistent with on-disk copy
* Caused by software bugs ,memory/disk corruptions, etc

nmemory | Fie1 - swwcture | I RN N R N
onaisk | rie1 swucure | S I S I I N

Before fault

in-memory

After fault

on-disk i

* Please refer to our paper for fault models #3 & #4

28

PES Consistency Model

* General principles that PFS checkers should ensure to maintain PFS
Integrity
e Applicable to diverse PFSes
* Include the definition of Consistency Group & 6 consistency rules

PES Consistency Model

* General principles that PFS checkers should ensure to maintain PFS
Integrity
e Applicable to diverse PFSes
* Include the definition of Consistency Group & 6 consistency rules

 Consistency Group (CG)
* Include an MDT-object and all its associated child OST-objects

| Valid CG MDT-object
of client file

' (" OST-object 1 OST-object2)

PES Consistency Model

* General principles that PFS checkers should ensure to maintain PFS
Integrity
e Applicable to diverse PFSes
* Include the definition of Consistency Group & 6 consistency rules

 Consistency Group (CG)
* Include an MDT-object and all its associated child OST-objects

* Consistency rules
* CG-rulel: every object in a CG should be consistent individually

| Valid CG MDT-object
of client file

e .

OST-object 1 OST-object 2

PES Consistency Model

* General principles that PFS checkers should ensure to maintain PFS
Integrity
e Applicable to diverse PFSes
* Include the definition of Consistency Group & 6 consistency rules

 Consistency Group (CG)
* Include an MDT-object and all its associated child OST-objects

* Consistency rules
* CG-rule2: one MDT-object of a client directory maps to no child OST-object

MDT-object of
client directory

PES Consistency Model

* General principles that PFS checkers should ensure to maintain PFS
Integrity
e Applicable to diverse PFSes
* Include the definition of Consistency Group & 6 consistency rules

 Consistency Group (CG)
* Include an MDT-object and all its associated child OST-objects

* Consistency rules
* CG-rule3: one MDT-object of a client file maps to at least one child OST-object

| Valid CG MDT-object
of client file

e .

OST-object 1 OST-object 2

PES Consistency Model

* General principles that PFS checkers should ensure to maintain PFS
Integrity
e Applicable to diverse PFSes
* Include the definition of Consistency Group & 6 consistency rules

 Consistency Group (CG)
* Include an MDT-object and all its associated child OST-objects

* Consistency rules
e CG-rule4: one OST-object maps to one and only one parent MDT-object

| Valid CG MDT-object
of client file

i OST-object 1 OST-object 2 |

34

PES Consistency Model

* General principles that PFS checkers should ensure to maintain PFS
Integrity
e Applicable to diverse PFSes
* Include the definition of Consistency Group & 6 consistency rules

 Consistency Group (CG)
* Include an MDT-object and all its associated child OST-objects

* Consistency rule
* CG-rule5: the mapping b/w a parent MDT-object and a child OST-object is bidirectional

| Valid CG MDT-object
of client file

' (" OST-object 1 OST-object2)

35

PES Consistency Model

* General principles that PFS checkers should ensure to maintain PFS
Integrity
e Applicable to diverse PFSes
* Include the definition of Consistency Group & 6 consistency rules

 Consistency Group (CG)
* Include an MDT-object and all its associated child OST-objects

* Consistency rules
* CG-rule6: an object violating previous rules may only exist in a specified location

MDT-object
of client file

i CG-rule5 violatio:n
| OST-object 1 OST-object 2 # /lost+found

36

PFS Checker Taxonomy

* A general characterization of checker policies
* Qualitatively measures the policies
* Enable cross-PFS comparison

* Include 4 Detection levels & 4 Repair levels based on consistency model
Detection Definition Repair Definition
levels levels
D PFS checker behaves abnormally w/o reporting detection results R PFS checker fixes CG corruptions in a wrong way
abn. wro.
D PFS checker finishes normally but misses all CG corruptions R PFS checker reports failure on repair
zero zero
D PFS checker partially detects CG corruptions R PFS checker partially fixes CG corruptions
par. par.
D PFS checker detects CG corruptions completely R PFS checker fixes corruptions and CGs’re valid again
com. com.

PFS Checker Taxonomy

* A general characterization of checker policies
* Qualitatively measures the policies
* Enable cross-PFS comparison

* Include 4 Detection levels & 4 Repair levels based on consistency model
Detection Definition Repair Definition
levels levels
D PFS checker behaves abnormally w/o reporting detection results R PFS checker fixes CG corruptions in a wrong way
abn. wro.
D PFS checker finishes normally but misses all CG corruptions R PFS checker reports failure on repair
zero zero
D PFS checker partially detects CG corruptions R PFS checker partially fixes CG corruptions
par. par.
D PFS checker detects CG corruptions completely R PFS checker fixes corruptions and CGs’re valid again
com. com.

38

PFS Checker Taxonomy

* A general characterization of checker policies

* Include 4 Detection levels & 4 Repair leve

* Qualitatively measures the policies
* Enable cross-PFS comparison

s based on consistency model

Detection Definition Repair Definition

levels levels

D b PFS checker behaves abnormally w/o reporting detection results | R PFS checker fixes CG corruptions in a wrong way
aon. wro.

D PFS checker finishes normally but misses all CG corruptions R PFS checker reports failure on repair
zero zero

D PFS checker partially detects CG corruptions R PFS checker partially fixes CG corruptions
par. par.

D PFS checker detects CG corruptions completely R PFS checker fixes corruptions and CGs’re valid again
com. com.

39

PFS Checker Taxonomy

* A general characterization of checker policies

* Include 4 Detection levels & 4 Repair leve

* Qualitatively measures the policies
* Enable cross-PFS comparison

s based on consistency model

Detection Definition Repair Definition

levels levels

D b PFS checker behaves abnormally w/o reporting detection results R PFS checker fixes CG corruptions in a wrong way
ann. wro.

D PFS checker finishes normally but misses all CG corruptions R PFS checker reports failure on repair
zero zero

D PFS checker partially detects CG corruptions R PFS checker partially fixes CG corruptions
par. par.

D PFS checker detects CG corruptions completely R PFS checker fixes corruptions and CGs’re valid again
com. com.

40

PFS Checker Taxonomy

* A general characterization of checker policies

* Include 4 Detection levels & 4 Repair leve

* Qualitatively measures the policies
* Enable cross-PFS comparison

s based on consistency model

Detection Definition Repair Definition

levels levels

D b PFS checker behaves abnormally w/o reporting detection results R PFS checker fixes CG corruptions in a wrong way
aon. wro.

D PFS checker finishes normally but misses all CG corruptions R PFS checker reports failure on repair
zero zero

D PFS checker partially detects CG corruptions R PFS checker partially fixes CG corruptions
par. par.

D PFS checker detects CG corruptions completely R PFS checker fixes corruptions and CGs’re valid again
com. com.

41

PFS Checker Taxonomy

* A general characterization of checker policies
* Qualitatively measures the policies
* Enable cross-PFS comparison

* Include 4 Detection levels & 4 Repair levels based on consistency model
Detection Definition Repair Definition
levels levels
D PFS checker behaves abnormally w/o reporting detection results R PFS checker fixes CG corruptions in a wrong way
abn. wro
D PFS checker finishes normally but misses all CG corruptions R PFS checker reports failure on repair
zero zero
D PFS checker partially detects CG corruptions R PFS checker partially fixes CG corruptions
par. par.
D PFS checker detects CG corruptions completely R PFS checker fixes corruptions and CGs’re valid again
com. com.

42

PFS Checker Taxonomy

* A general characterization of checker policies
* Qualitatively measures the policies
* Enable cross-PFS comparison

* Include 4 Detection levels & 4 Repair levels based on consistency model
Detection Definition Repair Definition
levels levels
D PFS checker behaves abnormally w/o reporting detection results R PFS checker fixes CG corruptions in a wrong way
abn. wro.
D PFS checker finishes normally but misses all CG corruptions R PFS checker reports failure on repair
zero zero
D PFS checker partially detects CG corruptions R PFS checker partially fixes CG corruptions
par. par.
D PFS checker detects CG corruptions completely R PFS checker fixes corruptions and CGs’re valid again
com. com.

43

PFS Checker Taxonomy

* A general characterization of checker policies
* Qualitatively measures the policies
* Enable cross-PFS comparison

* Include 4 Detection levels & 4 Repair levels based on consistency model
Detection Definition Repair Definition

levels levels

D PFS checker behaves abnormally w/o reporting detection results R PFS checker fixes CG corruptions in a wrong way
abn. wro.

D PFS checker finishes normally but misses all CG corruptions R PFS checker reports failure on repair
zero zero

D PFS checker partially detects CG corruptions | R PFS checker partially fixes CG corruptions |
par. par.

D PFS checker detects CG corruptions completely R PFS checker fixes corruptions and CGs’re valid again
com. com.

44

PFS Checker Taxonomy

* A general characterization of checker policies
* Qualitatively measures the policies
* Enable cross-PFS comparison

* Include 4 Detection levels & 4 Repair levels based on consistency model
Detection Definition Repair Definition
levels levels
D PFS checker behaves abnormally w/o reporting detection results R PFS checker fixes CG corruptions in a wrong way
abn. wro.
D PFS checker finishes normally but misses all CG corruptions R PFS checker reports failure on repair
zero zero
D PFS checker partially detects CG corruptions R PFS checker partially fixes CG corruptions
par. par.
D PFS checker detects CG corruptions completely R PFS checker fixes corruptions and CGs’re valid again
com. com.

45

Outline

* Experimental Results
e Conclusion & Future Work

Experimental Results

e Studied 11 Lustre structures and 7 BeeGFS structures

Lustre Structures junk zero duplicate out-of-sync BeeGFS Structures junk zero duplicate out-of-sync
MDT-object — — — Dabn. R,ero dentry-by-name (MDT-object) _— — Deom. | Reom.
OST-object D,ero Rero D,ero Rero — Dabn. Rero dentry-by-ID (MDT-object) _— — Deom Reom.
llog record D,ero Rero D,ero Rero — D,ero R,ero chunk (OST-object) D,ero R,ero D,ero R,ero — Dyar R,ero
FID on MDT Deom Ruro. Deom Ryero Deom. Ruro. Deom. Ruro. fghfs Deom. Ruvro. Deom. Ruro. com. Ryero Deom Ruro.
FID on OST Deom Ryero Deom Ryero Deom. Ryero D,ero Ryero content directory — — Deom. Reom.
FLDB Dzero Rzero Dzero Rzero - Dzero Rzero n I in k * Dcom. Rzero * Dcom. Rzero -

Ol table *Deom. | Rzero | *Peom. | Riero — *Deom. | Reom. size *Deom. | Rzero | *Peom. | Ruero —

LOV EA *Deom. | Reom. | *Peom. | Reom. | *Peom. | Reom. | *Peom. | Reom.

PFID Dpar. Rpaf g Dcom. Rcom. Dcom. Rcom. Dzero Rzero

linkEA Deom. Reom. Deom. Reom. Deom. | *Reom. | Deom. Reom

nlink Drro | Rer | *Deom | Recro — 47

Experimental Results

e Studied 11 Lustre structures and 7 BeeGFS structures

Lustre Structures Jjunk duplicate out-of-sync BeeGFS Structures zero duplicate out-of-sync
MDT-object — Dabn. R,ero dentry-by-name (MDT-object) — — Deom. | Reom.
OST-object Diero Reero Reero - Dabn. Reero dentry-by-ID (MDT-object) - - Deom Reom.
llog record Dzero Rzero Rzero - Dzero Rzero chunk (OST'O bj eCt) Dzero Rzero - Dpar. Rzero
FI D on M DT DCOm RWfO. RZefO DCOm. RWfO. fghfs Dcom. RWI’O. com. Rzero Dcom RWI’O.
FID on OST Deom Ryero Ryero D,ero Rero content directory — — Doom | Reom.
FLDB Dzero Rzero Rzero - Dzero Rzero nlink * Dcom. Rzero - -

Ol table * Dcom. Rzero Rzero - * Dcom. Rcom. size * Dcom. Rzero - -

LOV EA * Dcom. Rcom. Rcom. * Dcom. Rcom.

PFID Dpar. Rpar. Rcom. Dzero Rzero

linkEA Dcom. Rcom. Rcom. Dcom. Rcom

nlink D R R — — 48

zero

N
)
I
(o]

Experimental Results

e Studied 11 Lustre structures and 7 BeeGFS structures

Lustre Structures Jjunk duplicate out-of-sync BeeGFS Structures zero duplicate out-of-sync
MDT-object — Dabn. R,ero dentry-by-name (MDT-object) — — Deom. | Reom.
OST-object Diero Reero Reero - Dabn. Reero dentry-by-ID (MDT-object) - - Deom Reom.
llog record Dzero Rzero Rzero - Dzero Rzero chunk (OST'O bj eCt) Dzero Rzero - Dpar. Rzero
FI D on M DT DCOm RWfO. RZefO DCOm. RWfO. fghfs Dcom. RWI’O. com. Rzero Dcom RWI’O.
FID on OST Deom Ryero Ryero D,ero Rero content directory — — Doom | Reom.
FLDB Dzero Rzero Rzero - Dzero Rzero nlink * Dcom. Rzero - -

Ol table * Dcom. Rzero Rzero - * Dcom. Rcom. size * Dcom. Rzero - -

LOV EA * Dcom. Rcom. Rcom. * Dcom. Rcom.

PFID Dpar. Rpar. Rcom. Dzero Rzero

linkEA Dcom. Rcom. Rcom. Dcom. Rcom

nlink D R R — — 49

zero

N
)
I
(o]

Experimental Results

e Studied 11 Lustre structures and 7 BeeGFS structures

Lustre Structures junk zero duplicate out-of-sync BeeGFS Structures junk zero duplicate out-of-sync
MDT-object — _— — Dabn. R,ero dentry-by-name (MDT-object) _— — Deom. | Reom.
OST-object D,ero Rero D,ero Rero — Dabn. Rero dentry-by-ID (MDT-object) _— — Deom Reom.
llog record Doero | Riero | Diero | Reero — Deero | Reero | chunk (OST-object) Doero | Roero | Diero | Reero — Doar | Reero
FID on MDT Deom Ruro. Deom Ryero Deom. Ruro. Deom. Ruro. fghfs Deom. Ruvro. Deom. Ruro. com. Ryero Deom Ruro.
FID on OST Deom Ryero Deom Ryero Deom. Ryero D,ero Ryero content directory — — Deom. Reom.
FLDB Dzero Rzero Dzero Rzero - Dzero Rzero n I in k * Dcom. Rzero * Dcom. Rzero -

Ol table *Deom. | Roero | "Deom. | Reero — *Deom. | Reom. | size *Deom. | Roero | *Deom. | Reero —

LOV EA *Deom. | Reom. | *Peom. | Reom. | *Peom. | Reom. | *Peom. | Reom.

PFID Dpar. Rpar g Dcom. RCom. Dcom. Rcom. Dzero Rzero

linkEA Deom. Reom. Deom. Reom. Deom. | *Reom. | Deom. Reom

nlink Drro | Rer | *Deom | Recro — 20

Experimental Results

e Studied 11 Lustre structures and 7 BeeGFS structures

Lustre Structures junk zero duplicate out-of-sync BeeGFS Structures junk zero duplicate out-of-sync
MDT-object — — — Dabn. R,ero dentry-by-name (MDT-object) _— — Deom. | Reom.
OST-object D,ero Rero D,ero Rero — Dabn. Rero dentry-by-ID (MDT-object) _— — Deom Reom.
llog record D,ero Rero D,ero Rero — D,ero R,ero chunk (OST-object) D,ero R,ero D,ero R,ero — Dyar R,ero
FID on MDT Deom Ruro. Deom Ryero Deom. Ruro. Deom. Ruro. fghfs Deom. Ruvro. Deom. Ruro. com. Ryero Deom Ruro.
FID on OST Deom Ryero Deom Ryero Deom. Ryero D,ero Ryero content directory — — Deom. Reom.
FLDB Dzero Rzero Dzero Rzero - Dzero Rzero n I in k * Dcom. Rzero * Dcom. Rzero -

Ol table *Deom. | Rzero | *Peom. | Riero — *Deom. | Reom. size *Deom. | Rzero | *Peom. | Ruero —

LOV EA *Deom. | Reom. | *Peom. | Reom. | *Peom. | Reom. | *Peom. | Reom.

PFID Dpar. Rpaf g Dcom. Rcom. Dcom. Rcom. Dzero Rzero

linkEA Deom. Reom. Deom. Reom. Deom. | *Reom. | Deom. Reom

nlink Drro | Rer | *Deom | Recro — =

Experimental Results

* 14 cases: checkers repair CG corruptions completely

Lustre Structures Jjunk duplicate out-of-sync BeeGFS Structures Jjunk zero duplicate out-of-sync
MDT-object — — Dabn. R,ero dentry-by-name (MDT-object) — — Deom. | Reom.
OST-object D,ero Rero Rero — Dabn. Rero dentry-by-ID (MDT-object) _— — Deom. | Reom.
llog record D,ero Rero Rero — D,ero R,ero chunk (OST-object) D,ero R,ero D,ero R,ero — Dyar R,ero
FID on MDT Deom Ruro. Ryero Deom. Ruro. Deom. Ruro. fghfs Deom. Ruvro. Deom. Ruro. com. Ryero Deom Ruro.
FID on OST Deom Ryero Ryero Deom. Ryero D,ero Ryero content directory — — Dcom. Reom.
FLDB Dzero Rzero Rzero - Dzero Rzero n I in k * Dcom. Rzero * Dcom. Rzero - -

Ol table *Deom. | Reero Reero — *Deom. | Reom size *Deom. | Rero | *Deom. | Reero - -

LOV EA *Deom. | Reom Reom. | *Deom. | Reom. | *Deom. | Reom

PFID par. | Rpar. Room. | Deom. | Reom | Diero | Reero

linkEA Deom. Reom Reom Deom. | *Reom. | Deom. Reom

nlink D,ero R,ero Rero — — >2

Experimental Results

e 18 cases: checkers detects CG corruptions but can’t repair completely

Lustre Structures junk zero duplicate out-of-sync BeeGFS Structures junk zero duplicate out-of-sync
MDT-object — — Dabn. R,ero dentry-by-name (MDT-object) — — — Deom. | Reom.
OST-object D,ero Rero D,ero Rero — Dabn. Rero dentry-by-ID (MDT-object) — — — Deom. | Reom.
llog record Do | Reero | Daero | Reero - Do | Rero chunk (OST-object) Do | Reero | Doero | Reero — Door | Reero
FID on MDT Deom. D fghfs Deom.

FID on OST Deom. content directory — — — Deom. | Reom.
FLDB Dyero nlink — —

Ol table *Dcom size — —

LOV EA *D,,,

PFID Dy

linkEA Do,

nlink D 23

Experimental Results

* 12 cases: checkers only check the in-memory copy of the structure

* Could potentially miss corruptions of on-disk structures

Lustre Structures junk zero duplicate out-of-sync BeeGFS Structures junk zero duplicate out-of-sync
MDT-object — — — Dabn. R,ero dentry-by-name (MDT-object) — Deom. | Reom.
OST-object D,ero Rero D,ero Rero — Dabn. Rero dentry-by-ID (MDT-object) — Deom Reom.
llog record D,ero Rero D,ero Rero — D,ero R,ero chunk (OST-object) D,ero R,ero D,ero R,ero — Dyar R,ero
FID on MDT Deom Ruro. Deom Ryero Deom. Ruro. Deom. Ruro. fghfs Deom. Ruvro. Deom. Ruro. com. Ryero Deom Ruro.
FID on OST Deom Ryero Deom Ryero Deom. Ryero D,ero Ryero content directory — Deom. Reom.
FLDB Dzero Rzero Dzero Rzero - Dzero Rzero n I in k * Dcom, Rzero * Dcom, Rzero -

Ol table *Deom. | Reero | "Deom. | Riero — *Deom. | Reom size *Deom. | Ruero | "Peom. | Reero -

LOV EA * Dcom. Rcom. * Dcom. Rcom. * Dcom. Rcom. * Dcom, Rcom.

PFID Dpar. Rpaf g Dcom. Rcom. Dcom. Rcom. Dzero Rzero

linkEA Deom. Reom. Deom. Reom. Deom. | *Reom. | Deom. Reom

n I in k Dzero Rzero * Dcom. Rzero - o

Experimental Results

e 2 cases: LFSCK triggers kernel panic
* Has been confirmed by developers and led to 1 new patch

* WhamCloud Community Jira: LU-13980, 09/26/2020

Lustre Structures junk zero duplicate out-of-sync BeeGFS Structures junk zero duplicate out-of-sync
MDT-object — — — R,ero dentry-by-name (MDT-object) — Deom. | Reom.
OST-object D,ero Rero D,ero Rero — Rero dentry-by-ID (MDT-object) — Deom Reom.
llog record Deero | Reero | Drero | Reero — Diero | Reero chunk (OST-object) Doero | Roero | Diero | Reero — Doar | Reero
FID on MDT Deom Ruro. Deom Ryero Deom. Ruro. Deom Ruro. fghfs Deom. Ruvro. Deom. Ruro. com. Ryero Deom Ruro.
FID on OST Deom Ryero Deom Ryero Deom. Ryero D,ero Ryero content directory — Deom. Reom.
FLDB Dzero Rzero Dzero Rzero - Dzero Rzero n I in k * Dcom. Rzero * Dcom. Rzero - -

Ol table *Deom. | Roero | "Deom. | Reero — *Deom. | Reom. size *Deom. | Rero | *Deom. | Reero — —

LOV EA *Deom. | Reom. | *Peom. | Reom. | *Peom. | Reom. | *Peom. | Reom.

PFID Dpar. Rpaf . Dcom. R(:om. Dcom. Rcom. Dzero Rzero

linkEA Deom. Reom. Deom. Reom. Deom. | *Reom. | Deom. Reom

nlink Drro | Rer | *Deom | Recro — =

Outline

e Conclusion & Future Work

Conclusion & Future Work

* A systematic approach to study PFS checkers
* Has led to a new patch on Lustre

* Future work
 More automation (e.g., apply fuzzing techniques)
e Study other PFSes (e.g., OrangeFS, Ceph)

* Improve PFS checkers

* Policy completeness
* Performance

Conclusion & Future Work

* A systematic approach to study PFS checkers
* Has led to a new patch on Lustre

 Future work

 More automation (e.g., apply fuzzing techniques)
e Study other PFSes (e.g., OrangeFS, Ceph)

* Improve PFS checkers

* Policy completeness
* Performance

Thank you & Questions?

