
Fahim Tahmid Chowdhury*, Yue Zhu*, Francesco Di Natale+, Adam Moody+,
Elsa Gonsiorowski+, Kathryn Mohror+, Weikuan Yu*

Florida State University*
Lawrence Livermore National Laboratory+

Emulating I/O Behavior in Scientific Workflows 
on High Performance Computing Systems

PDSW 2020



Outline

• Understanding HPC Workflow I/O

• Wemul: HPC Workflow I/O Emulation Framework

• Experimental Results

• Future Work

2 PDSW 2020



HPC Workflow and Dataflow

• What is HPC Workflow?

– Pre-defined or random ordered execution of set of tasks

– Target can be achieved by inter-dependent or independent applications

• Scientific applications on HPC can create complex workflows

– Managing multi-scale simulations, e.g., high-energy physics, material science and 
biological science, etc.

– Coupling multi-physics codes, e.g., climate models

– Cognitive simulations and ensembles, e.g., optimization and uncertainty quantification

• Dataflow or data transfer in HPC Workflows can create bottlenecks due to data-
dependency among workflow modules

3 PDSW 2020



Simple Workflow: Producer-Consumer I/O

4 PDSW 2020

• Producer and consumer processes can reside on same or different nodes

• Inter-node producer-consumer processes need shared resource for data transfer

• Contention among tasks for shared resource can hinder the overall performance



Complex Workflow: Cancer Moonshot Pilot-2

5 PDSW 2020

• Simulation of RAS protein 
and cell membrane 
interaction to help early 
stage cancer diagnosis

• Run by Multiscale Machine-
Learned Modeling 
Infrastructure (MuMMI)[1]

• 4K Sierra nodes with 16K 
GPUs and 176K CPU cores

• Macro-scale analysis 
generates 400M files of over 
1PB total size

[1] F. Di Natale et al., “A Massively Parallel Infrastructure for Adaptive Multiscale Simulations: Modeling RAS Initiation Pathway for Cancer”, SC’19



HPC Workflow I/O Challenges

• Scale and complexity pose significant challenges

– Coupling diverse types of applications

– Handling failures

– Scheduling millions of tasks on compute

– Managing humongous amount of data using cutting-edge storage stack

• Understanding I/O behavior from workflow perspective is a pre-requisite to data 
management strategy development

– Challenge 1: Scarcity of actual workflow source code

– Challenge 2: Tight dependency of workflow on specific supercomputing cluster

– Solution: System-agnostic framework to emulate HPC workflow I/O workloads

6 PDSW 2020



Existing I/O Analysis Tools

• Synthetic Benchmarks

– IOR, IOZone, FIO, Filebench, etc.

– Limitation: Difficult to closely mimic real application behavior

• Application Benchmarks

– CM1, Montage, HACC I/O, VPIC I/O, FLASH3 I/O, etc.

– Limitation: Non-generic application-specific tools

• I/O workload modeling and simulation tools

– IOWA, MACSio, etc.

– Limitation: Not possible to address data dependency among the workflow tasks

7 PDSW 2020



• How to address the data-dependency among workflow modules?
• How to mimic generic complex workflow with/without cycles?
• How to develop a system-agnostic emulation framework?
• How to leverage the framework for workflow workload analysis?

Important Research Questions

8 PDSW 2020



Outline

• Understanding HPC Workflow I/O

• Wemul: HPC Workflow I/O Emulation Framework

• Experimental Results

• Future Work

9 PDSW 2020



Graph Representation of Data-dependency

10 PDSW 2020



Wemul: Software Architecture

11 PDSW 2020



Wemul: Execution Modes

• DL training

– Recursively traverse all files in a dataset directory and equally assign to each process

– Read all files in parallel

12 PDSW 2020

Parameter Description

--input_dir <path> Mountpoint or path to storage system to use

--block_size <size in bytes> Block size per read or write request

--segment_count <number> Total number of blocks or segments

--use_ior (optional) Enable using IOR as a library

--num_epochs <number> Number of epochs in DL training experiment

--comp_time_per_epoch <time in seconds> Computation emulation per epoch



Wemul: Execution Modes (contd.)

• Producer-consumer

– Inter- or intra-node modes

– Can be run as standalone producer or consumer, but not both

13 PDSW 2020

Parameter Description

--inter_node Set for enabling inter-node producer-consumer

--producer_only Run Wemul as standalone producer application

--consumer_only Run Wemul as standalone consumer application

--ranks_per_node <number> Feed ranks per node number to help intra- or inter-node data transfer



Wemul: Execution Modes (contd.)

• Application-based
– Run Wemul as a standalone application

– Set the list of files to read/write and a list of mount point paths

– Set block size, segment count and access pattern, i.e., file-per-process or shared-file

14 PDSW 2020

Parameter Description

--read_input_dirs <dir1:dir2:..> Colon separated list of mountpoints to storage systems for reading

--read_filenames <file1:file2:..> Colon separated list of files to be read

--read_block_size <size in bytes> Block size for the files to be read

--read_segment_count <number> Segment count for the files to be read

--file_per_process_read Enable file-per-process read (shared read by default)

--write_input_dirs <dir1:dir2:..> Colon separated list of mountpoints to storage systems for writing

--write_filenames <file1:file2:..> Colon separated list of files to be written

--write_block_size <size in bytes> Block size for the files to be written

--write_segment_count <number> Segment count for the files to be written

--file_per_process_write Enable file-per-process write (shared write by default)



Wemul: Execution Modes (contd.)

• DAG-based
– Take graph representation of the entire workflow as input

– Processes of the same application can have different access patterns

– --dag_file <filepath>

15 PDSW 2020



Outline

• Understanding HPC Workflow I/O

• Wemul: HPC Workflow I/O Emulation Framework

• Experimental Results

• Future Work

16 PDSW 2020



Experimental Setup

• HPC cluster: Lassen

– IBM Power9 system 44 cores per node

– 795 nodes

– Memory: 256 GB per node

– Parallel File System: 24 PB IBM Spectrum Scale (GPFS)

– Burst Buffer: 1.6 TB on-node NVMe PCIe SSD devices per node

– RAMDisk: 148 GB per node

– tmpfs: 128 GB per node

• Experiments on all execution modes using GPFS

– 1 to 16 client nodes

– 8 processes per node

– Profiling Tool: Darshan-3.1.7

17 PDSW 2020



DL Training I/O on Lassen’s GPFS

18

• Dataset: 327680 1 MiB files 
arranged equally in 320 
subdirectories aggregating 320 GiB

• Emulate 3 epochs

• Run 5 times for each data point

• Reaches up to ~12 GiB/s read for 
16 nodes and 8 processes per node

• Latency decreases with increasing 
processes, because each process 
has less files to read

PDSW 2020



Producer-Consumer I/O on Lassen’s GPFS

19

• Simple inter-node producer-
consumer workflow

• 8 procs/node

• 32 G data produced by each 
process, and the same consumed 
by another

• ~2.2 TiB for 16 nodes

• Max ~118 GiB/s read b/w

• Max ~142 GiB/s write b/w

PDSW 2020



Application-based I/O on Lassen’s GPFS

20

• 3 stage producer-consumer 
workflow

 Stage 1: Write #(procs/2) 32G files 
with shared access

 Stage 2: Read files from stage 1 
with shared-access and write 
#(procs) 16G files with file-per-
process access

 Stage 3: file-per-process read files 
from stage 2 and write #(procs/2) 
32G files with shared access

• ~6TiB data for 16 nodes

• ~160 GiB/s read b/w

• ~130 GiB/s write b/w

PDSW 2020



MuMMI-like DAG I/O on Lassen’s GPFS

21 PDSW 2020

• Dataflow with 4 stages

• Shared and file-per-process write 
in last stage

• Each file is 32G

• ~4TiB data for 16 nodes

• ~34 GiB/s read b/w for 16 nodes

• ~5 GiB/s write b/w for 16 nodes



Outline

• Understanding HPC Workflow I/O

• Wemul: HPC Workflow I/O Emulation Framework

• Experimental Results

• Future Work

22 PDSW 2020



Future Work

• Enable Wemul to generate workload in finer I/O pattern granularity

• Provide OpenMP support for multi-threading in DL training

• Enable staging and unstaging of checkpoint files using AXL

• Automatically generate the workflow definition through DAG

• Add support for other parallel I/O interfaces, i.e., HDF5, NetCDF, ADIOS, etc.

• Any additional suggestion of extensions helpful for the HPC community

23 PDSW 2020



Acknowledgements

24 PDSW 2020

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-CONF-813999.

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees 
makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use 
would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

• Thanks a lot for your time!

• Wemul source code is available in LLNL’s GitHub

– https://github.com/LLNL/Wemul

• Any questions, suggestions, feedback?
– Create GitHub issue here: https://github.com/LLNL/Wemul/issues

– Directly email to: fchowdhu@cs.fsu.edu

https://github.com/LLNL/Wemul
https://github.com/LLNL/Wemul/issues
mailto:fchowdhu@cs.fsu.edu

