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HPC Workflow and Dataflow

• What is HPC Workflow?

– Pre-defined or random ordered execution of set of tasks

– Target can be achieved by inter-dependent or independent applications

• Scientific applications on HPC can create complex workflows

– Managing multi-scale simulations, e.g., high-energy physics, material science and 
biological science, etc.

– Coupling multi-physics codes, e.g., climate models

– Cognitive simulations and ensembles, e.g., optimization and uncertainty quantification

• Dataflow or data transfer in HPC Workflows can create bottlenecks due to data-
dependency among workflow modules
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Simple Workflow: Producer-Consumer I/O
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• Producer and consumer processes can reside on same or different nodes

• Inter-node producer-consumer processes need shared resource for data transfer

• Contention among tasks for shared resource can hinder the overall performance



Complex Workflow: Cancer Moonshot Pilot-2
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• Simulation of RAS protein 
and cell membrane 
interaction to help early 
stage cancer diagnosis

• Run by Multiscale Machine-
Learned Modeling 
Infrastructure (MuMMI)[1]

• 4K Sierra nodes with 16K 
GPUs and 176K CPU cores

• Macro-scale analysis 
generates 400M files of over 
1PB total size

[1] F. Di Natale et al., “A Massively Parallel Infrastructure for Adaptive Multiscale Simulations: Modeling RAS Initiation Pathway for Cancer”, SC’19



HPC Workflow I/O Challenges

• Scale and complexity pose significant challenges

– Coupling diverse types of applications

– Handling failures

– Scheduling millions of tasks on compute

– Managing humongous amount of data using cutting-edge storage stack

• Understanding I/O behavior from workflow perspective is a pre-requisite to data 
management strategy development

– Challenge 1: Scarcity of actual workflow source code

– Challenge 2: Tight dependency of workflow on specific supercomputing cluster

– Solution: System-agnostic framework to emulate HPC workflow I/O workloads
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Existing I/O Analysis Tools

• Synthetic Benchmarks

– IOR, IOZone, FIO, Filebench, etc.

– Limitation: Difficult to closely mimic real application behavior

• Application Benchmarks

– CM1, Montage, HACC I/O, VPIC I/O, FLASH3 I/O, etc.

– Limitation: Non-generic application-specific tools

• I/O workload modeling and simulation tools

– IOWA, MACSio, etc.

– Limitation: Not possible to address data dependency among the workflow tasks
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• How to address the data-dependency among workflow modules?
• How to mimic generic complex workflow with/without cycles?
• How to develop a system-agnostic emulation framework?
• How to leverage the framework for workflow workload analysis?

Important Research Questions
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Graph Representation of Data-dependency
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Wemul: Software Architecture
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Wemul: Execution Modes

• DL training

– Recursively traverse all files in a dataset directory and equally assign to each process

– Read all files in parallel
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Parameter Description

--input_dir <path> Mountpoint or path to storage system to use

--block_size <size in bytes> Block size per read or write request

--segment_count <number> Total number of blocks or segments

--use_ior (optional) Enable using IOR as a library

--num_epochs <number> Number of epochs in DL training experiment

--comp_time_per_epoch <time in seconds> Computation emulation per epoch



Wemul: Execution Modes (contd.)

• Producer-consumer

– Inter- or intra-node modes

– Can be run as standalone producer or consumer, but not both
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Parameter Description

--inter_node Set for enabling inter-node producer-consumer

--producer_only Run Wemul as standalone producer application

--consumer_only Run Wemul as standalone consumer application

--ranks_per_node <number> Feed ranks per node number to help intra- or inter-node data transfer



Wemul: Execution Modes (contd.)

• Application-based
– Run Wemul as a standalone application

– Set the list of files to read/write and a list of mount point paths

– Set block size, segment count and access pattern, i.e., file-per-process or shared-file
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Parameter Description

--read_input_dirs <dir1:dir2:..> Colon separated list of mountpoints to storage systems for reading

--read_filenames <file1:file2:..> Colon separated list of files to be read

--read_block_size <size in bytes> Block size for the files to be read

--read_segment_count <number> Segment count for the files to be read

--file_per_process_read Enable file-per-process read (shared read by default)

--write_input_dirs <dir1:dir2:..> Colon separated list of mountpoints to storage systems for writing

--write_filenames <file1:file2:..> Colon separated list of files to be written

--write_block_size <size in bytes> Block size for the files to be written

--write_segment_count <number> Segment count for the files to be written

--file_per_process_write Enable file-per-process write (shared write by default)



Wemul: Execution Modes (contd.)

• DAG-based
– Take graph representation of the entire workflow as input

– Processes of the same application can have different access patterns

– --dag_file <filepath>
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Experimental Setup

• HPC cluster: Lassen

– IBM Power9 system 44 cores per node

– 795 nodes

– Memory: 256 GB per node

– Parallel File System: 24 PB IBM Spectrum Scale (GPFS)

– Burst Buffer: 1.6 TB on-node NVMe PCIe SSD devices per node

– RAMDisk: 148 GB per node

– tmpfs: 128 GB per node

• Experiments on all execution modes using GPFS

– 1 to 16 client nodes

– 8 processes per node

– Profiling Tool: Darshan-3.1.7
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DL Training I/O on Lassen’s GPFS
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• Dataset: 327680 1 MiB files 
arranged equally in 320 
subdirectories aggregating 320 GiB

• Emulate 3 epochs

• Run 5 times for each data point

• Reaches up to ~12 GiB/s read for 
16 nodes and 8 processes per node

• Latency decreases with increasing 
processes, because each process 
has less files to read
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Producer-Consumer I/O on Lassen’s GPFS
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• Simple inter-node producer-
consumer workflow

• 8 procs/node

• 32 G data produced by each 
process, and the same consumed 
by another

• ~2.2 TiB for 16 nodes

• Max ~118 GiB/s read b/w

• Max ~142 GiB/s write b/w
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Application-based I/O on Lassen’s GPFS
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• 3 stage producer-consumer 
workflow

 Stage 1: Write #(procs/2) 32G files 
with shared access

 Stage 2: Read files from stage 1 
with shared-access and write 
#(procs) 16G files with file-per-
process access

 Stage 3: file-per-process read files 
from stage 2 and write #(procs/2) 
32G files with shared access

• ~6TiB data for 16 nodes

• ~160 GiB/s read b/w

• ~130 GiB/s write b/w
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MuMMI-like DAG I/O on Lassen’s GPFS
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• Dataflow with 4 stages

• Shared and file-per-process write 
in last stage

• Each file is 32G

• ~4TiB data for 16 nodes

• ~34 GiB/s read b/w for 16 nodes

• ~5 GiB/s write b/w for 16 nodes
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Future Work

• Enable Wemul to generate workload in finer I/O pattern granularity

• Provide OpenMP support for multi-threading in DL training

• Enable staging and unstaging of checkpoint files using AXL

• Automatically generate the workflow definition through DAG

• Add support for other parallel I/O interfaces, i.e., HDF5, NetCDF, ADIOS, etc.

• Any additional suggestion of extensions helpful for the HPC community
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• Thanks a lot for your time!

• Wemul source code is available in LLNL’s GitHub

– https://github.com/LLNL/Wemul

• Any questions, suggestions, feedback?
– Create GitHub issue here: https://github.com/LLNL/Wemul/issues

– Directly email to: fchowdhu@cs.fsu.edu

https://github.com/LLNL/Wemul
https://github.com/LLNL/Wemul/issues
mailto:fchowdhu@cs.fsu.edu

