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• With large-scale computing systems are moving towards using GPUs as workhorses of 
computing

• file I/O to move data between GPUs and storage devices becomes critical

• I/O performance optimizing technologies
• NVIDIA’s GPU Direct Storage (GDS) - reducing the latency of data movement between 

GPUs and storage. 

• In this presentation, we will talk about a recently developed virtual file driver (VFD) 
that takes advantage of the GDS technology allowing data transfers between GPUs and 
storage without using CPU memory as a “bounce buffer”

Motivation



Traditional Data Transfer without GPUDirect Storage
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1. fd = open(“file.txt”, O_RDONLY);
2. buf = malloc(size);
3. pread(fd, buf, size, 0);
4. cudaMalloc(d_buf, size);
5. cudaMemcpy(d_buf, buf, size, cudaMemcpyHostToDevice);



Data Transfer with GPUDirect Storage (GDS)
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NVIDIA GPUDirect Storage
1. fd = open(“file.txt”, O_RDONLY | O_DIRECT, …);
2.    cudaMalloc(d_buf, size);
3.    cuFileRead(fhandle, d_buf, size, 0);

Traditional Data Transfer

1. fd = open(“file.txt”, O_RDONLY, …);

2. buf = malloc(size);

3. pread(fd, buf, size, 0);

4. cudaMalloc(d_buf, size);

5. cudaMemcpy(d_buf, buf, size, cudaMemcpyHostToDevice);

No need for a 
“bounce buffer”



High Level I/O Library Objectives

• Ease-of-use

• Standardized format

• Portable Performance 
Optimizations

HPC I/O software stack

Applications

High Level I/O Library (HDF5, netCDF, ADIOS)

I/O Middleware (MPI-IO)

I/O Forwarding

Parallel File System (Lustre, GPFS, …)

I/O Hardware (disk-based, SSD-based, …)



HDF5 Virtual File Driver(s)

VFD Description

SEC2 default driver 

POSIX file-system functions 
like read and write to perform 
I/O to a single file

DIRECT force data to be written 
directly to file-system

disables OS buffering

MPIIO used with Parallel HDF5, to 
provide parallel I/O support
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GPU Data Management
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• GDS VFD differences from SEC2 VFD
• File Descriptor is open with O_DIRECT (disables all OS buffering)
• Read and Write handlers needs to distinguish between CPU (metadata) and GPU memory 

pointers
• cuFileDriver needs to be initialized per run

• Some overhead for each I/O call
• Querying CUDA Runtime for information about memory pointers
• cuFile buffer registration and deregistration 

HDF5 GDS – Virtual File Driver



• GDS VFD knobs
• num_threads – number of pthreads servicing one cuFile request
• blocksize – transfer size of one cuFile request

Experimental Evaluation – Lustre File System

Image Source: https://wiki.lustre.org/Introduction_to_Lustre



• System Configuration
• NVIDIA DGX-2 
• 16x Tesla v100
• 2x Samsung NVMe SM961/PM961 RAID0 (Seq Reads = ~6.4 GB/s, Seq Write = ~3.6 GB/s)
• Lustre File System (4 OSTs, 1MB strip size)

• Benchmarks
• Local Storage

• Sequential R/W Rates 
• Lustre File System

• Multi-threaded Sequential R/W Rates
• Multi-GPU (one GPU per process, one file per process)

Experimental Evaluation



• HDF5 GDS achieves higher 
write rates for requests 
greater than 512 MB

• Possible Optimizations:
• make user specify the 

location of the memory 
pointer for each memory 
transfer

• cuFile buffer register 
before I/O call

Write Performance – Local Storage



Read Performance – Local Storage

• HDF5 GDS achieves higher 
read rates for requests 
greater than 256 MB

• Possible Optimizations:
• make user specify the 

location of the memory 
pointer for each memory 
transfer

• cuFile buffer register 
before I/O call



• Using more threads increases write rates 
dramatically (almost 2x speed for using 8 
threads instead of 4 threads)

• Varying blocksize did not change much

• Default behavior of SEC2 (no threading)
• Requires a significant change
• Some developers are working on 

relaxing Serial HDF5 “global lock”

Multi-Threaded Writes, Single GPU, Lustre File System



• SEC2 read rates are best in most 
cases

• More threads did not offer an 
improvement in read rate

• Read ahead was left on for this 
experiment

Multi-Threaded Read, Single GPU, Lustre File System



Multi-Process Writes, Multiple GPU, Lustre File System

• GDS VFD clear advantage over 
SEC2 VFD for a distributed file 
system

GDS VFD Knobs
• 4 threads (OSTs)
• 1MB blocksize (strip size)

Multi-Process Writes 
• Single GPU per MPI Rank 
• Single HDF5 file per MPI Rank
• File size: 1GB



• SEC2 VFD dominates over GDS VFD 
(read ahead was left enabled)

GDS VFD Knobs
• 4 threads (OSTs)
• 1MB blocksize (strip size)

Multi-Process Reads 
• Single GPU per MPI Rank 
• Single HDF5 file per MPI Rank
• File size: 1GB

Multi-Process Reads, Multiple GPU, Lustre File System



• HDF5 GDS VFD improves the write rates over SEC2 VFD
• HDF5 SEC2 VFD seems to offer higher read rates over GDS VFD mainly because of 

optimizations at other layers (read ahead)

Future Work
• GDS for Parallel HDF5 – MPIIO VFD

• MPI-IO developers are working on this
• HDF5 GDS VFD tuning knobs for Distributed File Systems
• Avoiding the overhead 

• Track data buffer locations 
• Track data buffer reuse
• Async IO

Conclusions



• Contact: 
John Ravi jjravi@lbl.gov
Quincey Koziol koziol@lbl.gov
Suren Byna sbyna@lbl.gov

Thank you
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