
GPU Direct IO with HDF5
John Ravi • Quincey Koziol • Suren Byna

• With large-scale computing systems are moving towards using GPUs as workhorses of
computing

• file I/O to move data between GPUs and storage devices becomes critical

• I/O performance optimizing technologies
• NVIDIA’s GPU Direct Storage (GDS) - reducing the latency of data movement between

GPUs and storage.

• In this presentation, we will talk about a recently developed virtual file driver (VFD)
that takes advantage of the GDS technology allowing data transfers between GPUs and
storage without using CPU memory as a “bounce buffer”

Motivation

Traditional Data Transfer without GPUDirect Storage

3

1. fd = open(“file.txt”, O_RDONLY);
2. buf = malloc(size);
3. pread(fd, buf, size, 0);
4. cudaMalloc(d_buf, size);
5. cudaMemcpy(d_buf, buf, size, cudaMemcpyHostToDevice);

Data Transfer with GPUDirect Storage (GDS)

4

NVIDIA GPUDirect Storage
1. fd = open(“file.txt”, O_RDONLY | O_DIRECT, …);
2. cudaMalloc(d_buf, size);
3. cuFileRead(fhandle, d_buf, size, 0);

Traditional Data Transfer

1. fd = open(“file.txt”, O_RDONLY, …);

2. buf = malloc(size);

3. pread(fd, buf, size, 0);

4. cudaMalloc(d_buf, size);

5. cudaMemcpy(d_buf, buf, size, cudaMemcpyHostToDevice);

No need for a
“bounce buffer”

High Level I/O Library Objectives

• Ease-of-use

• Standardized format

• Portable Performance
Optimizations

HPC I/O software stack

Applications

High Level I/O Library (HDF5, netCDF, ADIOS)

I/O Middleware (MPI-IO)

I/O Forwarding

Parallel File System (Lustre, GPFS, …)

I/O Hardware (disk-based, SSD-based, …)

HDF5 Virtual File Driver(s)

VFD Description

SEC2 default driver

POSIX file-system functions
like read and write to perform
I/O to a single file

DIRECT force data to be written
directly to file-system

disables OS buffering

MPIIO used with Parallel HDF5, to
provide parallel I/O support

HDF5 File
Format

File

Virtual File
Layer

SEC2

File on
Parallel
Filesystem

MPI I/O

Other

Custom

Internals Memory
Mgmt

Datatype
Conversion

I/O
Filters

Chunked
Storage

Version
Compatibility

et cetera…

Data Model Objects
Files, Groups, Datasets,

Attributes, …

Tunable Properties
Chunk Size, I/O Driver, …

HD
F5

 L
ib

ra
ry

St
or

ag
e

netCDF-4High Level
APIs

HDFview

Ap
ps h5dump
Java

H5Hut

API

C++/FORTRAN/Python

Infrastructure
Datatype, Dataspace, IDs, … APIs

…

Direct IO
to
Filesystem

DIRECT

HDF5 Virtual File Driver(s)

VFD Description

SEC2 default driver

POSIX file-system functions
like read and write to perform
I/O to a single file

DIRECT force data to be written
directly to file-system

disables OS buffering

MPIIO used with Parallel HDF5, to
provide parallel I/O support

HDF5 File
Format

File

Virtual File
Layer

SEC2

Internals Memory
Mgmt

Datatype
Conversion

I/O
Filters

Chunked
Storage

Version
Compatibility

et cetera…

Data Model Objects
Files, Groups, Datasets,

Attributes, …

Tunable Properties
Chunk Size, I/O Driver, …

HD
F5

 L
ib

ra
ry

St
or

ag
e

netCDF-4High Level
APIs

HDFview

Ap
ps h5dump
Java

H5Hut

API

C++/FORTRAN/Python

Infrastructure
Datatype, Dataspace, IDs, … APIs

Direct IO
to
Filesystem

DIRECT

GPUDirect
to
Filesystem

GDS

GDS Enable GPUDirect Storage

GPU Data Management

8

GPU

CPU

Compute
Cores

Memory Hierarchy

Registers

L2 Cache
NVMe Storage Host

Memory

Apps

OS
Kernel

I/O Call

L1 Cache SMEM

Global Memory

PCIe 3.0
16 GB/s

Copy Engine
PCIe 3.0
16 GB/s

GPU Data Management

9

GPU

CPU

Compute
Cores

Memory Hierarchy

Registers

L2 Cache
NVMe Storage Host

Memory

Apps

OS
Kernel

I/O Call

L1 Cache SMEM

Global Memory

PCIe 3.0
16 GB/s

Copy Engine
PCIe 3.0
16 GB/s

GPU Data Management

10

GPU

CPU

Compute
Cores

Memory Hierarchy

Registers

L2 Cache
NVMe Storage Host

Memory

Apps

OS
Kernel

I/O Call

L1 Cache SMEM

Global Memory

PCIe 3.0
16 GB/s

Copy Engine
PCIe 3.0
16 GB/s

GPU Data Management

11

GPU

CPU

Compute
Cores

Memory Hierarchy

Registers

L2 Cache
NVMe Storage Host

Memory

Apps

OS
Kernel

I/O Call

L1 Cache SMEM

Global Memory

PCIe 3.0
16 GB/s

Copy Engine
PCIe 3.0
16 GB/s

GPU Data Management

12

GPU

CPU

Compute
Cores

Memory Hierarchy

Registers

L2 Cache
NVMe Storage Host

Memory

Apps

OS
Kernel

I/O Call

L1 Cache SMEM

Global Memory

PCIe 3.0
16 GB/s

Copy Engine
PCIe 3.0
16 GB/s

GPU Data Management

13

GPU

CPU

Compute
Cores

Memory Hierarchy

Registers

L2 Cache
NVMe Storage Host

Memory

Apps

OS
Kernel

I/O Call

L1 Cache SMEM

Global Memory

PCIe 3.0
16 GB/s

Copy Engine
PCIe 3.0
16 GB/s

GPU Data Management

14

GPU

CPU

Compute
Cores

Memory Hierarchy

Registers

L2 Cache
NVMe Storage Host

Memory

Apps

OS
Kernel

I/O Call

L1 Cache SMEM

Global Memory

PCIe 3.0
16 GB/s

Copy Engine
PCIe 3.0
16 GB/s

GPU Data Management

15

GPU

CPU

Compute
Cores

Memory Hierarchy

Registers

L2 Cache
NVMe Storage Host

Memory

Apps

OS
Kernel

I/O Call

L1 Cache SMEM

Global Memory

PCIe 3.0
16 GB/s

Copy Engine
PCIe 3.0
16 GB/s

GPU Data Management

16

GPU

CPU

Compute
Cores

Memory Hierarchy

Registers

L2 Cache
NVMe Storage Host

Memory

Apps

OS
Kernel

I/O Call

L1 Cache SMEM

Global Memory

PCIe 3.0
16 GB/s

Copy Engine
PCIe 3.0
16 GB/s

GPU Data Management

17

GPU

CPU

Compute
Cores

Memory Hierarchy

Registers

L2 Cache
NVMe Storage Host

Memory

Apps

OS
Kernel

I/O Call

L1 Cache SMEM

Global Memory

PCIe 3.0
16 GB/s

Copy Engine
PCIe 3.0
16 GB/s

GPU Data Management

18

GPU

CPU

Compute
Cores

Memory Hierarchy

Registers

L2 Cache
NVMe Storage Host

Memory

Apps

OS
Kernel

I/O Call

L1 Cache SMEM

Global Memory

PCIe 3.0
16 GB/s

Copy Engine
PCIe 3.0
16 GB/s

GPU Data Management (with GDS)

19

GPU

CPU

Compute
Cores

Memory Hierarchy

Registers

L2 Cache
NVMe Storage Host

Memory

Apps

OS
Kernel

I/O Call

L1 Cache SMEM

Global Memory

PCIe 3.0
16 GB/s

Copy Engine
PCIe 3.0
16 GB/s

GPU Data Management (with GDS)

20

GPU

CPU

Compute
Cores

Memory Hierarchy

Registers

L2 Cache
NVMe Storage Host

Memory

Apps

OS
Kernel

I/O Call

L1 Cache SMEM

Global Memory

PCIe 3.0
16 GB/s

Copy Engine
PCIe 3.0
16 GB/s

GPU Data Management (with GDS)

21

GPU

CPU

Compute
Cores

Memory Hierarchy

Registers

L2 Cache
NVMe Storage Host

Memory

Apps

OS
Kernel

I/O Call

L1 Cache SMEM

Global Memory

PCIe 3.0
16 GB/s

Copy Engine
PCIe 3.0
16 GB/s

GPU Data Management (with GDS)

22

GPU

CPU

Compute
Cores

Memory Hierarchy

Registers

L2 Cache
NVMe Storage Host

Memory

Apps

OS
Kernel

I/O Call

L1 Cache SMEM

Global Memory

PCIe 3.0
16 GB/s

Copy Engine
PCIe 3.0
16 GB/s

GPU Data Management (with GDS)

23

GPU

CPU

Compute
Cores

Memory Hierarchy

Registers

L2 Cache
NVMe Storage Host

Memory

Apps

OS
Kernel

I/O Call

L1 Cache SMEM

Global Memory

PCIe 3.0
16 GB/s

Copy Engine
PCIe 3.0
16 GB/s

• GDS VFD differences from SEC2 VFD
• File Descriptor is open with O_DIRECT (disables all OS buffering)
• Read and Write handlers needs to distinguish between CPU (metadata) and GPU memory

pointers
• cuFileDriver needs to be initialized per run

• Some overhead for each I/O call
• Querying CUDA Runtime for information about memory pointers
• cuFile buffer registration and deregistration

HDF5 GDS – Virtual File Driver

• GDS VFD knobs
• num_threads – number of pthreads servicing one cuFile request
• blocksize – transfer size of one cuFile request

Experimental Evaluation – Lustre File System

Image Source: https://wiki.lustre.org/Introduction_to_Lustre

• System Configuration
• NVIDIA DGX-2
• 16x Tesla v100
• 2x Samsung NVMe SM961/PM961 RAID0 (Seq Reads = ~6.4 GB/s, Seq Write = ~3.6 GB/s)
• Lustre File System (4 OSTs, 1MB strip size)

• Benchmarks
• Local Storage

• Sequential R/W Rates
• Lustre File System

• Multi-threaded Sequential R/W Rates
• Multi-GPU (one GPU per process, one file per process)

Experimental Evaluation

• HDF5 GDS achieves higher
write rates for requests
greater than 512 MB

• Possible Optimizations:
• make user specify the

location of the memory
pointer for each memory
transfer

• cuFile buffer register
before I/O call

Write Performance – Local Storage

Read Performance – Local Storage

• HDF5 GDS achieves higher
read rates for requests
greater than 256 MB

• Possible Optimizations:
• make user specify the

location of the memory
pointer for each memory
transfer

• cuFile buffer register
before I/O call

• Using more threads increases write rates
dramatically (almost 2x speed for using 8
threads instead of 4 threads)

• Varying blocksize did not change much

• Default behavior of SEC2 (no threading)
• Requires a significant change
• Some developers are working on

relaxing Serial HDF5 “global lock”

Multi-Threaded Writes, Single GPU, Lustre File System

• SEC2 read rates are best in most
cases

• More threads did not offer an
improvement in read rate

• Read ahead was left on for this
experiment

Multi-Threaded Read, Single GPU, Lustre File System

Multi-Process Writes, Multiple GPU, Lustre File System

• GDS VFD clear advantage over
SEC2 VFD for a distributed file
system

GDS VFD Knobs
• 4 threads (OSTs)
• 1MB blocksize (strip size)

Multi-Process Writes
• Single GPU per MPI Rank
• Single HDF5 file per MPI Rank
• File size: 1GB

• SEC2 VFD dominates over GDS VFD
(read ahead was left enabled)

GDS VFD Knobs
• 4 threads (OSTs)
• 1MB blocksize (strip size)

Multi-Process Reads
• Single GPU per MPI Rank
• Single HDF5 file per MPI Rank
• File size: 1GB

Multi-Process Reads, Multiple GPU, Lustre File System

• HDF5 GDS VFD improves the write rates over SEC2 VFD
• HDF5 SEC2 VFD seems to offer higher read rates over GDS VFD mainly because of

optimizations at other layers (read ahead)

Future Work
• GDS for Parallel HDF5 – MPIIO VFD

• MPI-IO developers are working on this
• HDF5 GDS VFD tuning knobs for Distributed File Systems
• Avoiding the overhead

• Track data buffer locations
• Track data buffer reuse
• Async IO

Conclusions

• Contact:
John Ravi jjravi@lbl.gov
Quincey Koziol koziol@lbl.gov
Suren Byna sbyna@lbl.gov

Thank you

mailto:jjravi@lbl.gov
mailto:koziol@lbl.gov
mailto:sbyna@lbl.gov

	GPU Direct IO with HDF5
	Motivation
	Traditional Data Transfer without GPUDirect Storage
	Data Transfer with GPUDirect Storage (GDS)
	HPC I/O software stack
	HDF5 Virtual File Driver(s)
	HDF5 Virtual File Driver(s)
	GPU Data Management
	GPU Data Management
	GPU Data Management
	GPU Data Management
	GPU Data Management
	GPU Data Management
	GPU Data Management
	GPU Data Management
	GPU Data Management
	GPU Data Management
	GPU Data Management
	GPU Data Management (with GDS)
	GPU Data Management (with GDS)
	GPU Data Management (with GDS)
	GPU Data Management (with GDS)
	GPU Data Management (with GDS)
	HDF5 GDS – Virtual File Driver
	Experimental Evaluation – Lustre File System
	Experimental Evaluation
	Write Performance – Local Storage
	Read Performance – Local Storage
	Multi-Threaded Writes, Single GPU, Lustre File System
	Multi-Threaded Read, Single GPU, Lustre File System
	Multi-Process Writes, Multiple GPU, Lustre File System
	Multi-Process Reads, Multiple GPU, Lustre File System
	Conclusions
	Thank you

