
Suggested line of text (optional):

WE START WITH YES.

5TH INTERNATIONAL PARALLEL DATA SYSTEMS WORKSHOP

KEEPING IT REAL

WHY HPC DATA SERVICES DON’T
ACHIEVE MICROBENCHMARK
PERFORMANCE

erhtjhtyhy

PHIL CARNS1, KEVIN HARMS1, BRAD SETTLEMYER2, BRIAN ATKINSON2, AND ROB ROSS1

carns@mcs.anl.gov
1Argonne National Laboratory
2Los Alamos National Laboratory

November 12, 2020 (virtual)

HPC DATA SERVICE PERFORMANCE

 HPC data service (e.g. file system) performance is difficult to interpret in isolation.

 Performance observations must be oriented in terms of trusted reference points.

 One way to approach this is by constructing roofline models for HPC I/O:

 How does data service performance

compare to platform capabilities?

 Where are the bottlenecks?

 Where should we optimize?

How do we find these rooflines?

2

HPC I/O ROOFLINE EXAMPLE

3

Multithreaded, single-node, cached op rates

GUFI: metadata traversal rate observed in a metadata indexing service (https://github.com/mar-file-

system/GUFI). The open() and readdir() system calls account for most of the GUFI execution time.

 Theoretical bound based on

projected system call rate

 Actual bounds based on local file

system microbenchmarks

 Microbenchmarks + rooflines:

– Help identify true limiting factors

– Help identify scaling limitations

– Might be harder to construct and

use than you expect.

https://github.com/mar-file-system/GUFI
https://github.com/mar-file-system/GUFI
https://github.com/mar-file-system/GUFI
https://github.com/mar-file-system/GUFI
https://github.com/mar-file-system/GUFI
https://github.com/mar-file-system/GUFI

THE DARK SIDE OF MICROBENCHMARKING

Employing microbenchmarks for rooflines is straightforward in principle:

1. Measure performance of components.

2. Use the measurements to construct rooflines in a relevant parameter space.

3. Plot actual data service performance relative to the rooflines.

This presentation focuses on potential pitfalls in step 1:

– Do benchmark authors and service developers agree on what to measure?

– Are the benchmark parameters known and adequately reported?

– Are the benchmark workloads appropriate?

– Are the results interpreted and presented correctly?

♫ Bum bum bummmmm ♫

4

HPC STORAGE SYSTEM COMPONENTS
Illustrative examples

5

Please see Artifact Description

appendix (and associated DOI)

for precise experiment details.

1) Network bandwidth

2) Network latency

3) CPU utilization

4) Storage caching

5) File allocation

We will focus on 5 examples drawn from

practical experience benchmarking OLCF

and ALCF system components:

NETWORK

CASE STUDIES

CASE STUDY 1: BACKGROUND

 Network transfer rates are a critical to distributed HPC data service performance.

 What is the best way to gather empirical network measurements?

– MPI is a natural choice:

– Widely available, portable, highly performant, frequently benchmarked

– It is the gold standard for HPC network performance.

 Let’s look at an osu_bw benchmark example from the OSU Benchmark Suite

(http://mvapich.cse.ohio-state.edu/benchmarks/).

Network Bandwidth

7

http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/

CASE STUDY 1: THE ISSUE

8

Example network transfer use case in HPC

data services (e.g., developer expectation)

Incrementally iterate over a large data set

with continuous concurrent operations.

Pattern measured by the osu_bw

benchmark (e.g., benchmark author intent)

All transfers (even concurrent ones) transmit or

receive from a single memory buffer, and

concurrency is achieved in discrete bursts.

Does the benchmark access memory the way a data service would?

CASE STUDY 1: THE IMPACT
Does this memory access pattern discrepancy affect performance?

9

 The stock osu_bw benchmark

achieves 11.7 GiB/s between nodes.

 The modified version iterates over a 1

GiB buffer on each process while

issuing equivalent operations.

 40% performance penalty

 Implications: understand if the

benchmark and the data service

generate comparable workloads.

CASE STUDY 2: BACKGROUND

 Network latency is a key constraint on metadata performance.

 MPI is also the gold standard in network latency, but is it doing what we want?

– Most MPI implementations busy poll even in blocking wait operations.

– Can transient or co-located data services steal resources like this?

 Let’s look at an fi_msg_pingpong benchmark example from the libfabric

fabtests (https://github.com/ofiwg/libfabric/tree/master/fabtests/).

– Libfabric offers a low-level API with more control over completion methods

than MPI.

Network Latency

10

https://github.com/ofiwg/libfabric/tree/master/fabtests/
https://github.com/ofiwg/libfabric/tree/master/fabtests/

CASE STUDY 2: THE ISSUE

11

How do potential completion methods differ?

is it safe to block on this queue?

fi_trywait(…)

allow OS to suspend process

poll(…, -1)

check completion queue (nonblocking)

fi_cq_read(…)

repeat until done

check completion queue (blocking)

fi_cq_sread(…)

repeat until done

Fabtest default completion method

• Loop checking for completion

• Consumes a host CPU core

• Minimizes notification latency

Fabtest “fd” completion method

• Poll() call will suspend process

until network event is available

• Simplifies resource multiplexing

• Introduces context switch and

interrupt overhead

CASE STUDY 2: THE IMPACT
How does the completion method affect performance?

12

 The default method achieves < 3

microsecond round trip latency.

 The fd completion method suspends

process until events are available.

 This incurs a 3x latency penalty.

 This also lowers CPU consumption

(would approach zero when idle).

 Implication: Consider if the benchmark

is subject to the same resource

constraints as the HPC data service.

CPU

CASE STUDIES

CASE STUDY 3: BACKGROUND

 The host CPU constrains performance if it

coordinates devices or relays data through main memory.

 This case study is a little different than the others:

– Observe the indirect impact of host CPU utilization on throughput.

– Is the data service provisioned with sufficient CPU resources?

 Let’s look at a fi_msg_bw benchmark example from the libfabric fabtests

(https://github.com/ofiwg/libfabric/tree/master/fabtests/)

 In conjunction with aprun, the ALPS job launcher

Host CPU utilization

14

https://github.com/ofiwg/libfabric/tree/master/fabtests/
https://github.com/ofiwg/libfabric/tree/master/fabtests/

CASE STUDY 3: THE ISSUE

15

Do service CPU requirements align with the provisioning policy?

Service

(benchmark)

Network progress

thread

OFI

API

Core 0

Core 1

Service

(benchmark)

Network progress

thread

OFI

API

Core 0

Core 1

Consider that a transport library may spawn an implicit thread for network progress:

Example 1:

progress thread

is bound to the

same CPU core

as the service.

Example 2:

progress thread

migrates to

a different

CPU core.

CASE STUDY 3: THE IMPACT
How does core binding affect performance?

16

 Default configuration achieves 2.15

GiB/s.

 The only difference in the second

configuration is that launcher

arguments are used to disable default

core binding policy.

 22.5% performance gain

 Implication: Is the benchmark using

the same allocation policy that your

data service would?

STORAGE

CASE STUDIES

CASE STUDY 4: BACKGROUND

 Cache behavior constrains performance in many use cases.

– A wide array of device and OS parameters can influence cache behavior.

– Some devices are actually slowed down by additional caching.

 We investigate the impact of the direct I/O parameter in this case study:

– Direct I/O is a Linux-specific (and not uniformly supported) file I/O mode.

– Does direct I/O improve or hinder performance for a given device?

 Let’s look at an fio benchmark (https://github.com/axboe/fio/) example.

Storage device caching modes

18

https://github.com/axboe/fio/
https://github.com/axboe/fio/

CASE STUDY 4: THE ISSUE

19

Interaction between cache layers in the write path

Cache

Device

Media

Cache

OS

Service

write()

e.g. Linux

block cache

e.g. embedded

DRAM

Consider two open() flags that alter

cache behavior and durability:

 O_DIRECT:

– Completely bypasses the OS cache

– No impact on the device cache (i.e., no

guarantee of durability to media until sync())

 O_SYNC:

– Doesn’t bypass any caches, but causes writes

to flush immediately (i.e., write-through mode)

– Impacts both OS and device cache

CASE STUDY 4: THE IMPACT
Does direct I/O help or hurt performance?

20

 We looked at four combinations.

 The answer is inverted depending

on whether O_SYNC is used or not.

 The write() timing in the first case is

especially fast because no data

actually transits to the storage device.

 Implications: the rationale for

benchmark configuration (and

subsequent conclusions) must be

clear.

CASE STUDY 5: BACKGROUND
Translating device performance to services

21

 Case study 4 established expectations for throughput in a common hypothetical

HPC data service scenario:

– “How fast can a server that write to a durable local log for fault tolerance?”

 We used fio again to evaluate this scenario, but this time:

– We only used the O_DIRECT|O_SYNC flags

(chosen based on previous experiment)

– We wrote to a local shared file, as a server daemon would.

 Are there any other parameters that will affect performance?

CASE STUDY 5: THE ISSUE

22

A tale of three file allocation methods

Data block

Logical file

Preallocate Append at EOF Wrap around at EOF

 Use fallocate() or similar to

set up file before writing

 Decouples pure write() cost

from layout and allocation

 Default in fio benchmark

 Write data at end of file

 File system must determine

block layout and allocate

space in the write() path

 Natural approach for a data

service or application: just

open a file and write it

 Wrap around and overwrite

original blocks at EOF

 After EOF, the file is already

allocated and the layout is

cached.

 Less common real-world use

case, but a plausible

benchmark misconfiguration

CASE STUDY 5: THE IMPACT
How do those file allocation strategy affect performance?

23

 Shared file, concurrent write, with

O_SYNC|O_DIRECT.

 Each file allocation method leads

to markedly different write

performance.

 It was not immediately clear to the

authors that fio used fallocate() by

default.

 Implications: determine (and report)

default benchmark parameters, and

consider if the benchmark includes all

relevant costs.

DISCUSSION

IMPLICATIONS FOR ROOFLINE MODELING

25

 Recall our original goal: construct realistic rooflines for HPC data services to

assist performance interpretation.

 The requisite data can be surprisingly difficult to extract from a benchmark:

– What does “realistic” mean?

– What is the benchmark really measuring?

– How and why were it’s configuration parameters selected?

 Resolving discrepancies may require extensive profiling effort and deep system

architecture expertise.

 Alternative outcome: unrealistic expectations, misdiagnosed problems, lost

development time.

HELP WANTED
How can we, as a community, improve the state of the practice?

26

 This study does not offer a panacea; it’s goal is to highlight examples and draw

attention to the problem.

 Anecdotally, benchmarks are often designed to extract maximal hardware

performance, even if the pattern that produces it is not feasible in production.

 What does this mean for our community?

– Is there value in standardizing benchmark motifs tailored to HPC data service

modalities?

– What is the best way to report and document benchmark parameters

(especially default parameters)?

– How can we be more rigorous in reporting not only experimental results, but

the rationale for experimental design?

Suggested closing statement (optional):

WE START WITH YES.

AND END WITH THANK YOU.

DO YOU HAVE ANY BIG QUESTIONS?

THANK YOU!

THIS WORK WAS SUPPORTED BY THE U.S. DEPARTMENT OF ENERGY,

OFFICE OF SCIENCE, ADVANCED SCIENTIFIC COMPUTING RESEARCH,

UNDER CONTRACT DE-AC02-06CH11357.

