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HPC DATA SERVICE PERFORMANCE 

 HPC data service (e.g. file system) performance is difficult to interpret in isolation. 

 Performance observations must be oriented in terms of trusted reference points. 

 One way to approach this is by constructing roofline models for HPC I/O: 

 

 How does data service performance 

compare to platform capabilities? 

 Where are the bottlenecks? 

 Where should we optimize? 

 

How do we find these rooflines? 
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HPC I/O ROOFLINE EXAMPLE 
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Multithreaded, single-node, cached op rates  

GUFI: metadata traversal rate observed in a metadata indexing service (https://github.com/mar-file-

system/GUFI).  The open() and readdir() system calls account for most of the GUFI execution time. 

 Theoretical bound based on 

projected system call rate 

 Actual bounds based on local file 

system microbenchmarks 

 Microbenchmarks + rooflines: 

– Help identify true limiting factors 

– Help identify scaling limitations 

– Might be harder to construct and 

use than you expect. 
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THE DARK SIDE OF MICROBENCHMARKING 

Employing microbenchmarks for rooflines is straightforward in principle: 

1. Measure performance of components. 

2. Use the measurements to construct rooflines in a relevant parameter space. 

3. Plot actual data service performance relative to the rooflines. 

 

This presentation focuses on potential pitfalls in step 1: 

– Do benchmark authors and service developers agree on what to measure? 

– Are the benchmark parameters known and adequately reported? 

– Are the benchmark workloads appropriate? 

– Are the results interpreted and presented correctly? 

♫ Bum bum bummmmm ♫  
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HPC STORAGE SYSTEM COMPONENTS 
Illustrative examples 
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Please see Artifact Description 

appendix (and associated DOI) 

for precise experiment details. 

1) Network bandwidth 

2) Network latency 

3) CPU utilization 

4) Storage caching 

5) File allocation 

We will focus on 5 examples drawn from 

practical experience benchmarking OLCF 

and ALCF system components: 



NETWORK 

CASE STUDIES 



CASE STUDY 1: BACKGROUND 

 Network transfer rates are a critical to distributed HPC data service performance. 

 What is the best way to gather empirical network measurements? 

– MPI is a natural choice: 

– Widely available, portable, highly performant, frequently benchmarked 

– It is the gold standard for HPC network performance. 

 Let’s look at an osu_bw benchmark example from the OSU Benchmark Suite 

(http://mvapich.cse.ohio-state.edu/benchmarks/). 

 

Network Bandwidth 
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CASE STUDY 1: THE ISSUE 
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Example network transfer use case in HPC 

data services (e.g., developer expectation) 

Incrementally iterate over a large data set 

with continuous concurrent operations. 

Pattern measured by the osu_bw 

benchmark (e.g., benchmark author intent) 

All transfers (even concurrent ones) transmit or 

receive from a single memory buffer, and 

concurrency is achieved in discrete bursts. 

Does the benchmark access memory the way a data service would? 



CASE STUDY 1: THE IMPACT 
Does this memory access pattern discrepancy affect performance? 
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 The stock osu_bw benchmark 

achieves 11.7 GiB/s between nodes. 

 The modified version iterates over a 1 

GiB buffer on each process while 

issuing equivalent operations. 

 40% performance penalty 

 Implications: understand if the 

benchmark and the data service 

generate comparable workloads. 



CASE STUDY 2: BACKGROUND 

 Network latency is a key constraint on metadata performance. 

 MPI is also the gold standard in network latency, but is it doing what we want? 

– Most MPI implementations busy poll even in blocking wait operations. 

– Can transient or co-located data services steal resources like this? 

 Let’s look at an fi_msg_pingpong benchmark example from the libfabric 

fabtests (https://github.com/ofiwg/libfabric/tree/master/fabtests/). 

– Libfabric offers a low-level API with more control over completion methods 

than MPI. 

Network Latency 
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CASE STUDY 2: THE ISSUE 
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How do potential completion methods differ? 

# is it safe to block on this queue? 

fi_trywait(…) 

# allow OS to suspend process 

poll(…, -1) 

# check completion queue (nonblocking) 

fi_cq_read(…) 

# repeat until done 

# check completion queue (blocking) 

fi_cq_sread(…) 

# repeat until done 

Fabtest default completion method 

• Loop checking for completion 

• Consumes a host CPU core 

• Minimizes notification latency 

Fabtest “fd” completion method 

• Poll() call will suspend process 

until network event is available 

• Simplifies resource multiplexing 

• Introduces context switch and 

interrupt overhead 



CASE STUDY 2: THE IMPACT 
How does the completion method affect performance? 
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 The default method achieves < 3 

microsecond round trip latency. 

 The fd completion method suspends 

process until events are available. 

 This incurs a 3x latency penalty. 

 This also lowers CPU consumption 

(would approach zero when idle). 

 Implication: Consider if the benchmark 

is subject to the same resource 

constraints as the HPC data service. 



CPU 

CASE STUDIES 



CASE STUDY 3: BACKGROUND 

 The host CPU constrains performance if it 

coordinates devices or relays data through main memory. 

 This case study is a little different than the others: 

– Observe the indirect impact of host CPU utilization on throughput. 

– Is the data service provisioned with sufficient CPU resources? 

 Let’s look at a fi_msg_bw benchmark example from the libfabric fabtests 

(https://github.com/ofiwg/libfabric/tree/master/fabtests/) 

 In conjunction with aprun, the ALPS job launcher 

Host CPU utilization 
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CASE STUDY 3: THE ISSUE 
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Do service CPU requirements align with the provisioning policy? 

Service 

(benchmark) 

Network progress 

thread 

OFI 

API 

Core 0 

Core 1 

Service 

(benchmark) 

Network progress 

thread 

OFI 

API 

Core 0 

Core 1 

Consider that a transport library may spawn an implicit thread for network progress: 

Example 1: 

progress thread 

is bound to the 

same CPU core 

as the service. 

Example 2: 

progress thread 

migrates to 

a different 

CPU core. 



CASE STUDY 3: THE IMPACT 
How does core binding affect performance? 
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 Default configuration achieves 2.15 

GiB/s. 

 The only difference in the second 

configuration is that launcher 

arguments are used to disable default 

core binding policy. 

 22.5% performance gain 

 Implication: Is the benchmark using 

the same allocation policy that your 

data service would? 



STORAGE 

CASE STUDIES 



CASE STUDY 4: BACKGROUND 

 Cache behavior constrains performance in many use cases. 

– A wide array of device and OS parameters can influence cache behavior. 

– Some devices are actually slowed down by additional caching. 

 We investigate the impact of the direct I/O parameter in this case study: 

– Direct I/O is a Linux-specific (and not uniformly supported) file I/O mode. 

– Does direct I/O improve or hinder performance for a given device? 

 Let’s look at an fio benchmark (https://github.com/axboe/fio/) example. 

Storage device caching modes 
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CASE STUDY 4: THE ISSUE 
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Interaction between cache layers in the write path 

Cache 

Device 

Media 

Cache 

OS 

Service 

write() 

e.g. Linux 

block cache 

e.g. embedded 

DRAM 

Consider two open() flags that alter 

cache behavior and durability: 

 O_DIRECT: 

– Completely bypasses the OS cache 

– No impact on the device cache (i.e., no 

guarantee of durability to media until sync()) 

 O_SYNC: 

– Doesn’t bypass any caches, but causes writes 

to flush immediately (i.e., write-through mode) 

– Impacts both OS and device cache 

 



CASE STUDY 4: THE IMPACT 
Does direct I/O help or hurt performance? 

20 

 We looked at four combinations. 

 The answer is inverted depending 

on whether O_SYNC is used or not. 

 The write() timing in the first case is 

especially fast because no data 

actually transits to the storage device. 

 Implications: the rationale for 

benchmark configuration (and 

subsequent conclusions) must be 

clear. 

 



CASE STUDY 5: BACKGROUND 
Translating device performance to services 
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 Case study 4 established expectations for throughput in a common hypothetical 

HPC data service scenario: 

– “How fast can a server that write to a durable local log for fault tolerance?” 

 We used fio again to evaluate this scenario, but this time: 

– We only used the O_DIRECT|O_SYNC flags 

(chosen based on previous experiment) 

– We wrote to a local shared file, as a server daemon would. 

 Are there any other parameters that will affect performance? 

 



CASE STUDY 5: THE ISSUE 
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A tale of three file allocation methods 

Data block 

Logical file 

Preallocate Append at EOF Wrap around at EOF 

 Use fallocate() or similar to 

set up file before writing 

 Decouples pure write() cost 

from layout and allocation 

 Default in fio benchmark 

 Write data at end of file 

 File system must determine 

block layout and allocate 

space in the write() path 

 Natural approach for a data 

service or application: just 

open a file and write it 

 Wrap around and overwrite 

original blocks at EOF 

 After EOF, the file is already 

allocated and the layout is 

cached. 

 Less common real-world use 

case, but a plausible 

benchmark misconfiguration 



CASE STUDY 5: THE IMPACT 
How do those file allocation strategy affect performance? 
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 Shared file, concurrent write, with 

O_SYNC|O_DIRECT. 

 Each file allocation method leads 

to markedly different write 

performance. 

 It was not immediately clear to the 

authors that fio used fallocate() by 

default. 

 Implications: determine (and report) 

default benchmark parameters, and 

consider if the benchmark includes all 

relevant costs. 

 

 

 



DISCUSSION 



IMPLICATIONS FOR ROOFLINE MODELING 
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 Recall our original goal: construct realistic rooflines for HPC data services to 

assist performance interpretation. 

 The requisite data can be surprisingly difficult to extract from a benchmark: 

– What does “realistic” mean? 

– What is the benchmark really measuring? 

– How and why were it’s configuration parameters selected? 

 Resolving discrepancies may require extensive profiling effort and deep system 

architecture expertise. 

 Alternative outcome: unrealistic expectations, misdiagnosed problems, lost 

development time. 



HELP WANTED 
How can we, as a community, improve the state of the practice? 
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 This study does not offer a panacea; it’s goal is to highlight examples and draw 

attention to the problem. 

 Anecdotally, benchmarks are often designed to extract maximal hardware 

performance, even if the pattern that produces it is not feasible in production. 

 What does this mean for our community? 

– Is there value in standardizing benchmark motifs tailored to HPC data service 

modalities? 

– What is the best way to report and document benchmark parameters 

(especially default parameters)? 

– How can we be more rigorous in reporting not only experimental results, but 

the rationale for experimental design? 
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