5TH INTERNATIONAL PARALLEL DATA SYSTEMS WORKSHOP Argon ne 6

NATIONAL LABORATORY

KEEPING IT REAL

WHY HPC DATA SERVICES DON'T
ACHIEVE MICROBENCHMARK
PERFORMANCE

PHIL CARNS?, KEVIN HARMS?, BRAD SETTLEMYER?, BRIAN ATKINSON?, AND ROB ROSS!

carns@mcs.anl.gov
LArgonne National Laboratory
& °Los Alamos National Laboratory

T oy November 12, 2020 (virtual)

HPC DATA SERVICE PERFORMANCE

» HPC data service (e.g. file system) performance is difficult to interpret in isolation.

» Performance observations must be oriented in terms of trusted reference points.

= One way to approach this is by constructing roofline models for HPC I/O:

» How does data service performance
compare to platform capabilities?

= Where are the bottlenecks?
= Where should we optimize?

How do we find these rooflines?

A

Performance

resource Abounds .~ ’

resource Bbounds .

data service performance

>

Scale

Argonne &

HPC I/O0 ROOFLINE EXAMPLE

ooy . Multithreaded, single-node, cached op rates J Theoretical bound based on

400M Microbenchmark reaing e projected system call rate

350M N s e o et o :
oo Actual bounds based on local file
200M '

system microbenchmarks

"Sow A Microbenchmarks + rooflines:
soMT . — Help identify true limiting factors

miﬁé j — Help identify scaling limitations
1.5M | : : i

— Might be harder to construct and

150M

Entries per Second

1.0M | !
5000k |- 7 o S o— use than you expect.
00— s \70 75 2 EN ' 3
Concurrent System Calls

GUFI: metadata traversal rate observed in a metadata indexing service (https://github.com/mar-file-
system/GUFI). The open() and readdir() system calls account for most of the GUFI execution time.

Argonne &

https://github.com/mar-file-system/GUFI
https://github.com/mar-file-system/GUFI
https://github.com/mar-file-system/GUFI
https://github.com/mar-file-system/GUFI
https://github.com/mar-file-system/GUFI
https://github.com/mar-file-system/GUFI

THE DARK SIDE OF MICROBENCHMARKING

J4 Bum bum bummmmm J

Employing microbenchmarks for rooflines is straightforward in principle:
1. Measure performance of components.
2. Use the measurements to construct rooflines in a relevant parameter space.
3. Plot actual data service performance relative to the rooflines.

This presentation focuses on potential pitfalls in step 1.:
— Do benchmark authors and service developers agree on what to measure?
— Are the benchmark parameters known and adequately reported?
— Are the benchmark workloads appropriate?
— Are the results interpreted and presented correctly?

UCHICAGO % b pERARENT o Arganne National Laboratory is o
ARGONNE.. % ENERGY i:i5uadosdmi 4 Argonne &

AAAAAAAAAAAAAAAAAA

HPC STORAGE SYSTEM COMPONENTS

lllustrative examples

We will focus on 5 examples drawn from Please see Artifact Description
practical experience benchmarking OLCF appendix (and associated DOI)
and ALCF system components: for precise experiment details.

3) CPU utilization

1) Network bandwidth —p— network link_ compute node

Oﬁj_jjj;jj;o C) e [4) Storage caching

2) Network latency — O_D_D\ """""" s E".ﬁrag;"a'évkie 5) File allocation

| |
compute nodes servers disks

potentlal component microbenchmark points

UCHICAGO @ U5, DEPARTMENT OF _ Arganne National Laboratory is °
q G US. D f Ei labo
NE.. \ZENERGY niizosedlirgmy 5 Argonne

>
A
[~
=]
z

compute node

network link

NETWORK
CASE STUDIES

compute nodes servers disks

potential component microbenchmark points

Argonne &

NATIONAL LABORATORY

CASE STUDY 1: BACKGROUND
Network Bandwidth

= Network transfer rates are a critical to distributed HPC data service performance.

» What is the best way to gather empirical network measurements?
— MPIl is a natural choice:
— Widely available, portable, highly performant, frequently benchmarked
— It is the gold standard for HPC network performance.

» Let’s look at an osu_bw benchmark example from the OSU Benchmark Suite
(http://mvapich.cse.ohio-state.edu/benchmarks/).

UCHICAGO % b pERARENT o Arganne National Laboratory is o
ARGONNE.. % ENERGY i:i5uadosdmi 7 Argonne &

AAAAAAAAAAAAAAAAAA

http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/

CASE STUDY 1: THE ISSUE

Does the benchmark access memory the way a data service would?

Example network transfer use case in HPC Pattern measured by the osu_bw
data services (e.g., developer expectation) benchmark (e.g., benchmark author intent)
Rank 0 Rank 1
I | '?’itranrér Rank 0 Rankl otart
B /-\ -, Timer
_ \‘
- ELoop N
i Iterations
<_:/_ - Stop
Stop ; { Timer
; { Timer
All transfers (even concurrent ones) transmit or
Incrementally iterate over a large data set receive from a single memory buffer, and
with continuous concurrent operations. concurrency is achieved in discrete bursts.

I Laboratory is a
By 8 Argonne &
B ' NATIONAL LABORATORY

CASE STUDY 1: THE IMPACT

Does this memory access pattern discrepancy affect performance?

12000 A

10000 A

Bandwidth (MiB/s)

4000 A

2000 ~

3 The stock osu_bw benchmark

8000 -

6000 -

_—

<

</

achieves 11.7 GiB/s between nodes.

—= The modified version iterates over a 1
GiB buffer on each process while
Issuing equivalent operations.

= 40% performance penalty

» Implications: understand if the
benchmark and the data service
generate comparable workloads.

default

patched
Memory buffer strategy

Argonne &

CASE STUDY 2: BACKGROUND

Network Latency

= Network latency is a key constraint on metadata performance.

= MPI is also the gold standard in network latency, but is it doing what we want?
— Most MPI implementations busy poll even in blocking wait operations.
— Can transient or co-located data services steal resources like this?

» Let’'s look at an fi_msg_pingpong benchmark example from the libfabric
fabtests (https://qgithub.com/ofiwg/libfabric/tree/master/fabtests/).
— Libfabric offers a low-level APl with more control over completion methods
than MPI.

UCHICAGO % b pERARENT o Arganne National Laboratory is o
Aune.. (1ENERGY (SBim ety 10 Argonne &

AAAAAAAAAAAAAAAAAA

https://github.com/ofiwg/libfabric/tree/master/fabtests/
https://github.com/ofiwg/libfabric/tree/master/fabtests/

CASE STUDY 2: THE ISSUE

How do potential completion methods differ?

Fabtest default completion method
check completion queue (blocking) . LOOp Checking for completion
fi cq _sread(..)
} Tepeat until done « Consumes a host CPU core

* Minimizes naotification latency

Fabtest “fd” completion method # is it safe to block on this queue?
* Poll() call will suspend process £i_trywait(..)

until network event is available ioiil(ow ?i)to suspend process
* Slmp“fles resource mU|tip|eXing # che.c';},{ completion queue (nonblocking)
* Introduces context switch and fi_cq_read(..)

interrupt overhead # repeat until done

11 Argonne &

CASE STUDY 2: THE IMPACT

How does the completion method affect performance?

The default method achieves < 3
microsecond round trip latency.

The fd completion method suspends
process until events are available.

33% median CPU utilization

» This incurs a 3x latency penalty.

= This also lowers CPU consumption
(would approach zero when idle).

» Implication: Consider if the benchmark
o IS subject to the same resource
constraints as the HPC data service.

Round trip latency (usec)

\

93% median CPU utilization

default (busy poll) fd (blocking)
Completion method

12 Argonne &

compute node

network link

CPU
CASE STUDIES

compute nodes servers disks

potential component microbenchmark points

. DEPARTMENT OF _ Argonne National Laboratory is a
NERG U.S, Department of Energy laboratory r O n n e
managed by UChicago Argonne, LLC.

NATIONAL LABORATORY

CASE STUDY 3: BACKGROUND

Host CPU utilization

» The host CPU constrains performance if it
coordinates devices or relays data through main memory.

» This case study is a little different than the others:
— Observe the indirect impact of host CPU utilization on throughpuit.
— |Is the data service provisioned with sufficient CPU resources?

» Let's look at a fi_msg_bw benchmark example from the libfabric fabtests
(https://github.com/ofiwg/libfabric/tree/master/fabtests/)

* |n conjunction with aprun, the ALPS job launcher

UCHICAGO % b pERARENT o Arganne National Laboratory is o
Aune.. (1ENERGY (SBim ety 14 Argonne &

AAAAAAAAAAAAAAAAAA

https://github.com/ofiwg/libfabric/tree/master/fabtests/
https://github.com/ofiwg/libfabric/tree/master/fabtests/

CASE STUDY 3: THE ISSUE

Do service CPU requirements align with the provisioning policy?

Consider that a transport library may spawn an implicit thread for network progress:

Core O Core O

Service Service
(benchmark) OF| (benchmark)

Network progress [l add

Example 1: Example 2:
progress thread thread progress thread OF|
is bound to the migrates 1O Trrrrrirsrssasssassssassssssssasasass Ay
same CPU core |Core 1 a different API

Core 1
as the service. CPU core. Network progress
thread

I Laboratory is &
STl 15 Argonne &

CASE STUDY 3: THE IMPACT

How does core binding affect performance?

2500 A

2000 ~

Bandwidth (MiB/s)

500

1500 A

1000 A

—_—

S

-3 Default configuration achieves 2.15
GiB/s.

The only difference in the second
configuration is that launcher
arguments are used to disable default
core binding policy.

= 22.5% performance gain

» Implication: Is the benchmark using
the same allocation policy that your

data service would?

default binding disabled
CPU binding

16 Argonne &

compute node

network link

STORAGE
CASE STUDIES

compute nodes servers disks

potential component microbenchmark points

Argonne &

NATIONAL LABORATORY

CASE STUDY 4: BACKGROUND

Storage device caching modes

= Cache behavior constrains performance in many use cases.
— A wide array of device and OS parameters can influence cache behavior.
— Some devices are actually slowed down by additional caching.

» We investigate the impact of the direct I/O parameter in this case study:
— Direct I/O is a Linux-specific (and not uniformly supported) file I/O mode.
— Does direct I/0O improve or hinder performance for a given device?

» Let’s look at an fio benchmark (https://github.com/axboe/fio/) example.

UCHICAGO % b pERARENT o Arganne National Laboratory is o
Aune.. (1ENERGY (SBim ety 18 Argonne &

AAAAAAAAAAAAAAAAAA

https://github.com/axboe/fio/
https://github.com/axboe/fio/

CASE STUDY 4: THE ISSUE

Interaction between cache layers in the write path

e

Service)

\o

e.g. Linux
block cache

e.g. embedded
DRAM

Consider two open() flags that alter
cache behavior and durability:

= O_DIRECT:
— Completely bypasses the OS cache
— No impact on the device cache (i.e., no
guarantee of durability to media until sync())
= O SYNC:
— Doesn’t bypass any caches, but causes writes

to flush immediately (i.e., write-through mode)
— Impacts both OS and device cache

19 Argonne &

CASE STUDY 4: THE IMPACT

Does direct I/O help or hurt performance?

Bandwidth (MiB/s)

5000 ~

4000 A

3000 ~

2000 +

1000 A

B—

AN

O_DIRECT degrades
performance if writes
are not synchronized

|

O_DIRECT improves
performance if writes
are synchronized

=

= \We looked at four combinations.

» The answer is inverted depending
on whether O_SYNC is used or not.

» The write() timing in the first case is
especially fast because no data
actually transits to the storage device.

» Implications: the rationale for
benchmark configuration (and
subsequent conclusions) must be
Clear.

default

O _DIRECT 0_SYNC

open() flags

O_DIRECT|O_SYNC

20 Argonne &

CASE STUDY 5: BACKGROUND

Translating device performance to services

» Case study 4 established expectations for throughput in a common hypothetical
HPC data service scenario:
— “How fast can a server that write to a durable local log for fault tolerance?”

» We used fio again to evaluate this scenario, but this time:
— We only used the O_DIRECT|O_SYNC flags
(chosen based on previous experiment)
— We wrote to a local shared file, as a server daemon would.

= Are there any other parameters that will affect performance?

21 Argonne &

CASE STUDY 5: THE ISSUE

A tale of three file allocation methods

Preallocate

EEEE

» Use fallocate() or similar to
set up file before writing

= Decouples pure write() cost
from layout and allocation

= Default in fio benchmark

Append at EOF

HEEN

Write data at end of file

File system must determine
block layout and allocate
space in the write() path
Natural approach for a data
service or application: just
open a file and write it

22

Data block .
Logical file D

Wrap around at EOF

LLL}

Wrap around and overwrite
original blocks at EOF

After EOF, the file is already
allocated and the layout is
cached.

Less common real-world use
case, but a plausible
benchmark misconfiguration

Argonne &

CASE STUDY 5: THE IMPACT

How do those file allocation strategy affect performance?

= Shared file, concurrent write, with
O_SYNC|O_DIRECT.

» Each file allocation method leads
to markedly different write
performance.

= |t was not immediately clear to the

i authors that fio used fallocate() by

default.

1001 » Implications: determine (and report)
— —— —— default benchmark parameters, and
file allocation strategy consider if the benchmark includes all

s relevant costs. Argonne &

800 -

700

600 -

u

o

o
1

Bandwidth (MiB/s)
D
o
o

w

o

o
1

200 1

DISCUSSION

4, U.S. DEPARTMENT OF _ Argonne National Laboratory is a
F ENERG U.S. Department of Energy laboratory O n n e
managed by UChicago Argonne, LLC.

NATIONAL LABORATORY

IMPLICATIONS FOR ROOFLINE MODELING

= Recall our original goal: construct realistic rooflines for HPC data services to
assist performance interpretation.

» The requisite data can be surprisingly difficult to extract from a benchmark:
— What does “realistic” mean?
— What is the benchmark really measuring?
— How and why were it's configuration parameters selected?

» Resolving discrepancies may require extensive profiling effort and deep system
architecture expertise.

= Alternative outcome: unrealistic expectations, misdiagnosed problems, lost
development time.

uc“chGo §e U.s. DEPARTMENT OF _ Argonne National Laboratory is a o
/ U.S. Departi 't of Energy laborat.
ARGONNE.. % ENERGY i:i5uadosdmi 25 Argonne
AAAAAAAAAAAAAAAAAA

HELP WANTED

How can we, as a community, improve the state of the practice?

» This study does not offer a panacea; it's goal is to highlight examples and draw
attention to the problem.

= Anecdotally, benchmarks are often designed to extract maximal hardware
performance, even if the pattern that produces it is not feasible in production.

» What does this mean for our community?
— Is there value in standardizing benchmark maotifs tailored to HPC data service

modalities?
— What is the best way to report and document benchmark parameters

(especially default parameters)?
— How can we be more rigorous in reporting not only experimental results, but

the rationale for experimental design?

uc“chGo §e U.s. DEPARTMENT OF _ Argonne National Laboratory is a o
/ U.S. Departi 't of Energy laborat.
ARGONNE.. % ENERGY i:i5uadosdmi 26 Argonne
AAAAAAAAAAAAAAAAAA

THANK YOU!

THIS WORK WAS SUPPORTED BY THE U.S. DEPARTMENT OF ENERGY,
OFFICE OF SCIENCE, ADVANCED SCIENTIFIC COMPUTING RESEARCH,
UNDER CONTRACT DE-AC02-06CH11357.

itory is a

_.f‘*%"' U.S. DEPARTMENT OF _ Argonne National Labora’
G ,1'»-.} ENERG U.S. Department of Energy laboratory r On n
NELLc Yy Bl B HANF T managed by U IChicago Argonne, LL C. e

NATIONAL LABORATORY

