Fingerprinting the Checker Policies of
Parallel File Systems

Runzhou Han
Iowa State University
hanrz@iastate.edu

Abstract—Parallel file systems (PFSes) play an essential role
in high performance computing. To ensure the integrity, many
PFSes are designed with a checker component, which serves as
the last line of defense to bring a corrupted PFS back to a healthy
state. Motivated by real-world incidents of PFS corruptions, we
perform a fine-grained study on the capability of PFS checkers
in this paper. We apply type-aware fault injection to specific PFS
structures, and examine the detection and repair policies of PFS
checkers meticulously via a well-defined taxonomy. The study
results on two representative PFS checkers show that they are
able to handle a wide range of corruptions on important data
structures. On the other hand, neither of them is perfect: there
are multiple cases where the checkers may behave sub-optimally,
leading to kernel panics, wrong repairs, etc. Our work has led
to a new patch on Lustre. We hope to develop our methodology
into a generic framework for analyzing the checkers of diverse
PFSes, and enable more elegant designs of PFS checkers for
reliable high-performance computing.

I. INTRODUCTION

High-performance parallel file systems (PFSes) play an
essential role today. A variety of PFSes (e.g., Lustre [23],
BeeGFS [29], OrangeFS [43], Ceph [42]) have been deployed
widely in national labs [6] and data centers [2] to empower
large-scale I/O intensive computing. Therefore, the integrity
of PFSes is critically important.

To ensure the integrity of PFSes and avoid system downtime
or data loss, various fault tolerance techniques have been
proposed (e.g., RAID [9], checkpointing [32], [38], [40],
failover [7], journaling [15], [37]). Unfortunately, despite the
great efforts, PFSes may still become corrupted in practice
for many reasons including software bugs, hardware faults,
power outages, etc. [11]. For example, in an incident at the
High Performance Computing Center (HPCC) in Texas, the
storage clusters managed by Lustre were severely corrupted
after power outages [12]. Similar cases have been reported in
other recent studies [22].

To handle the potential corruption, many PFSes are designed
with a checker component (e.g., LFSCK [33] for Lustre,
BeeGFS-FSCK for BeeGFS). Similar to the checkers of local
file systems (e.g., e2fsck for Ext2/3/4 [4], xfs—check for
XFS [10]), the PFS checker usually scans the on-disk layout
of the corresponding PFS, detects and repairs inconsistencies
based on predefined policies, and serves as the last line of
defense to bring the corrupted system back to a healthy state.
For simplicity, we call the underlying detection and repair
policies of PFS checkers as checker policy in this paper.

Duo Zhang
Iowa State University
duozhang @iastate.edu

Mai Zheng
Iowa State University
mai @iastate.edu

Nevertheless, designing a correct checker is notoriously
difficult due to the complexity of the file system and the
diversity of corruption scenarios [20], [25]-[28], [35]. For
example, Gunawi eral. [28] find that the checker of Ext2
may generate inconsistent or even insecure repairs. Similarly,
Carreira etal. [20] test the checkers of five popular local file
systems and find bugs in all of them, including cases leading
to data loss.

The deficiency exposed in local file system checkers raises
the concern for PFS checkers, because PFS checkers depend
on local file system states and need to examine a much larger
scale of states across local file systems. In fact, in the HPCC
incident mentioned above, the Lustre checker LFSCK failed
to repair the corrupted Lustre for unknown reasons.

Unfortunately, to the best of our knowledge, there is little
equivalent thorough study of PFS checkers, largely due to
the lack of effective methodologies. One recent framework
PFault [18] applies automatic fault injection to test the failure
handling of Lustre. While it is effective for its original design
goal, it is ineffective for studying PFS checkers due to its
coarse-grained fault models and emulation methodology. For
example, the whole device failure emulated by PFault can
easily affect the entire system including the PFS and the local
file system. As a result, it is difficult (if possible at all) to
understand the root causes of the symptoms observed, let
alone pinpointing the potential deficiency of the PFS checker.
Similarly, another recent work [41] proposes to study the crash
consistency of PFSes via replaying workload traces, which
shares the same limitation as PFault since it crashes the entire
system stack.

In this paper, we propose a fine-grained methodology to
fingerprint the checker policy, which is one fundamental step
to identify the potential deficiency and improve the design of
PFS checkers. One key observation is that the PFS metadata
is tightly interleaved with the metadata of local file systems
on storage devices. For example, Lustre’s Idiskfs backend is a
variant of Ext4, and Lustre leverages the extended attributes of
Ext4 inodes to store various metadata. Similarly, BeeGFS also
makes use of the extended attributes of local inodes. In other
words, the PFS metadata and the local file system metadata are
closely correlated. Therefore, to analyze the PFS checker with
high fidelity, we need to decouple such close correlation and
identify the contract between PFS and the local file system.

Based on the key observation, we conduct a study on the

checker policy of two important and different PFSes: Lustre
and BeeGFS. We leverage gray-box knowledge [14] of PFS
metadata, apply type-aware fault injection to specific PFS
structures while maintaining the integrity of local file systems,
and examine the policies of the target PFS checker metic-
ulously. Moreover, inspired by the classic IRON taxonomy
for local file systems [39], we characterize the checker policy
of Lustre and BeeGFS into multiple levels, which precisely
captures the detection and repair capabilities.

The detailed characterization helps us identify opportunities
for improving the state-of-the-art PFS checkers. Overall, we
find that both LFSCK and BeeGFS-FSCK can detect and re-
pair a variety of corruptions on important PES data structures.
However, there are still multiple cases where the checkers
may behave sub-optimally, generating kernel panics, wrong
repairs, invalid options, etc. The kernel panic case has been
confirmed by Lustre developers and has led to a new patch.
Encouraged by the study results, we are building an automatic
framework for fingerprinting the checker policy of PFSes in
depth. We hope to develop the methodology into an open-
source framework to facilitate analyzing the checker policy
of diverse PFSes and enable more elegant designs of PFS
checkers for reliable high-performance computing.

The rest of the paper is organized as follows: §1I introduces
the background with motivating examples; §III describes our
fingerprinting methodology; §IV presents experimental results
on Lustre and BeeGFS; §V discusses future work.

II. BACKGROUND & MOTIVATION

A. Parallel File Systems & Their Checkers

Parallel file systems (PFSes) are the critical I/O infras-
tructure for high-performance computing (HPC). They are
optimized for highly concurrent accesses to files at scale.
We use Lustre [34], one of the most popular PFSes [30], to
illustrate the typical architecture as follows:

¢ MGS/MGT: Management Server/Target manages and
store the configuration information of Lustre.

« MDS/MDT: Metadata Server/Target manages and stores
the metadata of Lustre; MDS provides network request
handling for one or more local MDTs.

e OSS/OST: Object Storage Server/Target manages and
stores the actual user data; OSS provides the file I/O
service and handles network requests for local OSTs; user
data are stored as one or more objects on OSTs.

« Clients launch applications to access the data in Lustre,
usually from login nodes or compute nodes.

As the system scale and complexity keeps increasing,
maintaining PFS consistency and data integrity is becoming
more and more important and challenging. Therefore, Lustre
introduces an online component called LFSCK [33] for de-
tecting and repairing corruptions, which has been significantly
enhanced since v2.6. Similarly, other popular PFSes also
include a checker component as the last line of defense to
handle corruptions (e.g., BeeGFS-FSCK, PVFS2-FSCK).

MDT OoST MDT OST

T T T T T 1 o TT T T T 1 F-- T Tt T T T " 1 F-T T T T T T T " 1

! ! 1 N [1 | 1

1 inode Lo inode Lo inode . inode !
1 1 1 1

: FID 1-:\\,:#: FID : 1 FID N: FID :
1 (|

! | LOVEA |7 parentfip | | ! | LOVEA -7 parentFiD | |

! . data . v data |

1 1 1 1

: MDT-object A : : OST-objecta | : MDT-object B : : OST-objectb 1

(@) (b)

Fig. 1: Two corruption cases on Lustre. (a) Corrupted
LOV EA on MDT, which can be detected and repaired by
LFSCK; (b) Corrupted FID on OST, which cannot be repaired,
although redundant information is available.

B. Examples of PFS Checker Policy

In this section, we demonstrate the checker policy of
LFSCK using two concrete examples. Fig. 1 shows sim-
plified Lustre data structures on MDT and OST, where
white/green/yellow boxes represent inode, inode extended
attribute, and data, respectively. In Fig. 1(a), OST-object a
recognizes MDT-object A as its parent, because a’s “parent
FID” maps to A’s “FID” (a global ID for each Lustre file).
Normally, A’s “LOV EA” should also map to a’s "FID”. In
case “LOV EA” becomes corrupted, we find that LFSCK is
able to detect and repair “LOV EA” via redundancy [46].

Similarly, in Fig. 1(b), MDT-object B’s “LOV EA” maps to
OST-object b’s “FID”. However, in case b’s “FID” becomes
corrupted, we find that LFSCK may fail to repair it, although
there is redundant information available. Such incompleteness
may leave the PFS in a corrupted state, eventually causing
downtime or even data loss. We propose a fine-grained ap-
proach to address the challenge in the next section.

III. CHECKER POLICY FINGERPRINTING

In this section, we introduce our method to study the
checker policies of PFSes. First, in order to trigger the de-
tection and repairing operations of the target PFS checker, we
apply type-aware fault injection to PFS images and generate
precise and diverse corruptions (§III-A). Second, in order
to qualitatively measure the checker policies, we develop a
taxonomy to characterize the behaviors in details (§11I-B).

A. Type-Aware Fault Injection

The behaviors of PES checkers depend on the PFS states,
which in turn depends on two major factors: the workloads
applied to the PFS, and the corruptions occurred to the PFS.
Therefore, the first step of our type-aware fault injection is to
apply workloads to age the PFS and generate representative
metadata layouts. Inspired by a recent work on aging file
systems [21], we apply a git-based workload to create the
aging effect efficiently. We plan to incorporate other 1/O
intensive workloads in future work (§V).

Next, after obtaining a meaningful metadata layout via
aging, we inject faults that emulate realistic corruptions. Many
existing works [18], [25], [41], [47] inject faults to the target
system in a coarse-grained type-oblivious manner, i.e., they do

TABLE I: PFS Data Structures. The table shows the data structures of Lustre and BeeGFS used in our type-aware fault
injection. For each structure, we list the name, the node location, the relation to local FS, and the usage. Note that the
information is derived from the source codes and (incomplete) documentations based on our best efforts.

Lustre Structures Node Relation to Local FS Usage

MDT-object MDT regular file (empty) Provides extended attributes for Lustre metadata
OST-object OST regular file Data stripes for user data

llog record MDT regular file Stores Lustre transaction info

FID MDT & OST extended attribute A unique, global ID of a Lustre file

FID location database (FLDB) MDT regular file Maps FID.sequence_number to MDT/OSTs
object index (OI) table MDT & OST regular file Maps FIDs to on-disk inode numbers

LOV EA MDT extended attribute Stores one or more child OST-objects’ FIDs
parent FID (PFID) OST extended attribute Stores parent MDT-object’s FID

linkEA MDT extended attribute Stores MDT-object’s name & its parent dir.’s FID
nlink MDT inode field Number of hard links of the inode
BeeGFS Structures Node Relation to Local FS Usage

dentry-by-name (MDT-object) MDT regular file (empty) Stores user file name in its name entry
dentry-by-ID (MDT-object) MDT regular file (empty) Stores child chunks’ ID in its name entry
thgfs (MDT-object) MDT extended attribute Stores BeeGFS metadata

chunk (OST-object) OST regular file Data stripes for user data & ID in its name entry
content directory MDT directory file (dir.) List of MDT-objects in directory

nlink MDT inode field Number of hard links of the inode

size OST inode field Size of a chunk

not consider how a byte is being used by the target system.
As a result, the injected faults often affect the entire software
stack and trigger complex behaviors (e.g., crash, reboot) that
are time-consuming and difficult to analyze.

To address the limitation, we inject well-defined faults to
specific types of the PFS structures. Such fine granularity
allows us to examine the different rules that the PFS checker
applies for its different internal structures efficiently. The types
of PFS data structures we test are listed in TABLE I, which
includes both Lustre and BeeGFS. Note that both PFSes have
data structures closely interleaved with the local file system
(e.g., Lustre’s FID and BeeGFS’ fhgfs are embedded in the
extended attributes of local inodes), which makes the type-
awareness critically important for avoiding the complexity
introduced by local file systems.

For the target PFS structures, we consider the following fault
models, which are derived from the literature [18], [19], [24],
[25], [39], [44], [48], [49] as well as the design documents of
the PFS checkers [16], [33]. These fault models capture the
typical corruptions that may occur in the local storage stack
and be exposed to the PFS checker:

e junk: bytes of the structure are replaced by random values.
This is the scenario of the two examples in Fig. 1, and
as mentioned in §II, LFSCK may or may not be able to
repair depending on the affected types.

o zero: bytes of the structure are replaced by zero. This is
a special case of junk.

o duplicate: the structure has the same value as another
structure of the same type. This may occur when doing
file-level backup and restore on MDT servers [13].

o out-of-sync: In-memory copy of the structure is incon-
sistent with on-disk copy. This may be caused by mem-

ory/disk corruptions and software bugs.

For PFS structures stored as regular files/directories on the
local file system, we use regular file operations to inject faults
(e.g., dd, rm); for other structures stored as the extended
attributes of local inodes, we use file system specific tools
(e.g. , debugfs [3]). All operations maintain the integrity
of the local file system. Also, to examine the checker policy
precisely, we only inject one single fault at a time, similar to
the previous work [24].

B. PFS Checker Taxonomy

Since the specific PFS structures and the consistency rela-
tions among them are diverse and complex, the detection and
repair policies of PFS checkers are complicated too. To make
the measurement and comparison more accurate, we develop a
unified taxonomy based on the high-level similarity of PFSes.

First, inspired by the classic memory consistency mod-
els [36], we propose a PFS consistency model, which describes
the general principle that PFS checkers should ensure in
order to maintain PFS integrity. This model is based on the
observation that many policies can be described as relations
between objects on MDT and objects on OSTs. Specifically,
the PFS consistency model includes the following definition
and consistency rules:

e Consistency Group (CG): an MDT-object and all its
associated child OST-objects form a CG;

e CG-rulel: every object in a CG should be consistent
individually (e.g., has a valid format within the structure);

e CG-rule2: one MDT-object of a client directory maps to
no child OST-object;

o CG-rule3: one MDT-object of a client file maps to at least
one child OST-object;

e CG-rule4: one OST-object maps to one and only one
parent MDT-object;

o CG-rule5: the mapping between a parent MDT-object and
a child OST-object is bidirectional;

e CG-rule6: an object violating the above rules may only
exist in a specified location (e.g., “lost+found”).

If a corruption breaks one or more of the consistency
rules, we expect the PFS checker to be able to detect the
inconsistency. In case there is redundancy in PFS structures,
the PFS checker may be able to repair the inconsistency;
otherwise, the corrupted objects should be reclaimed to a
specified location (e.g., “lost+found”).

Based on the model, we propose a taxonomy to characterize
the checker policies of PFSes meticulously, which includes
multiple Detection and Repair levels. Detection levels describe
the capability of the PFS checker to detect corruptions violat-
ing the consistency model:

e Dgupn.: the PFES checker behaves abnormally (e.g., hangs
or crashes) without reporting detection results;

e D.ero: the PFS checker finishes normally but misses the
corruption, which may occur when the checker skips an
entire data structure;

e Dpqr.: the PES checker partially detects the corruption,
which may occur when the checker only examines partial
bytes of a CG;

e D.om.: the ideal case when the PFS checker detects the
corruption completely.

Similarly, Repair levels describe the capability of the PFS
checker to repair the corruptions:

e Ryro.: the PFS checker fixes the corruption in a wrong
way (e.g., a corrupted inode extended attribute is “re-
paired” by a wrong value).

e R,.ro: the PFS checker reports failure on repair; note that
D.ero implies Ry epo-

e Rpqr.: the PFS checker partially fixes the corruption;

e Reom.: the PFS checker fixes the corruption completely
according to the PFS consistency model.

Note that our current model and taxonomy may not cover
all potential cases of PFS corruptions. For example, if MDT-
object A mistakenly refers to MDT-object B’s child OST-object
b, and b also mistakenly refers to A. Based on the model, a
PFS checker may move MDT-object B to “lost+found”,
while A and b may legally refer to each other. And the
PFS checker may be classified as Dcoy,. and Reon,.. However,
such corner cases require collaborative corruptions on multiple
servers simultaneously, which is rare in practice. Therefore, we
leave more sophisticated cases as future work.

IV. EXPERIMENTAL RESULTS

In this section, we present the results of fingerprinting
the policies of LFSCK (§IV-A) and BeeGFS-FSCK (§IV-B).
Overall, we find that both checkers can detect and repair a
variety of corruptions. However, there are still cases where
the checkers behave sub-optimally (e.g., kernel panics, wrong
repair, invalid option). All experiments were performed on

a six-node cluster: one MGS/MGT, one MDS/MDT, three
OSS/OSTs, and one client. A subset of the experiments have
been repeated and verified on a Lustre profile and a BeeGFS
profile on CloudLab [1]. The experiment scripts, corrupted
images, and the CloudLab profiles are publicly available [8].

A. LFSCK Policy

LFSCK is a distributed checker with one master engine on
MDT and slave engines on OSTs. All engines can examine the
Lustre structures locally. Moreover, the master engine inquires
metadata from OSTs to check global consistency with kernel
threads. Table II summarizes the results of LFSCK using the
taxonomy defined in §III. Overall, we find that LFSCK is
able to detect and repair corruptions on a variety of structures
completely (i.e., D.,,, and R.,.). We discuss a few sub-
optimal cases in details below.

Kernel panic (D,;,,.). When the in-memory copy of the inode
(stands for Ext4 inode here) of “MDT-object” or “OST-object”
is inconsistent with the on-disk copy, LFSCK kernel threads
may trigger kernel panics. This implies a potential gap in
the contract between LFSCK and local file system: LFSCK
assumes the object files exist, which may not always be true
in practice (e.g., local inodes may be corrupted or reclaimed by
e2fsck [4]). A more elegant policy could be verifying the
existence of the file first. This abnormal behavior has been
confirmed by Lustre developers, and has led to a new patch.

Skipping on-disk copy (*D...,.). For most data structures,
LFSCK scans the on-disk copy and examines the consistency.
However, for “OlI table” and “LOV EA”, LFSCK only checks
the in-memory copy of the structure without examining the
actual on-disk copy. As a result, the on-disk corruption may
not be detected immediately.

Wrong repair (R,,,.,.). LFSCK may use redundancy in Lustre
structures to repair corrupted structures. However, in case of
Jjunk or out-of-sync in “FID on MDT”, LFSCK may update
the FID on MDT using a new value, but forget to update the
corresponding PFID on OST. As a result, the mapping between
the MDT-object and the OST-object is still invalid.

Unbounded repair (+R..,,.). When “linkEA” is duplicated,
LFSCK appears to be able to repair the structure initially.
However, we observe that when the structure is corrupted and
repaired repeatedly, linkEA will be extended with extra bytes
and LFSCK will eventually hang.

B. BeeGFS-FSCK Policy

Different from LFSCK, BeeGFS-FSCK loads structures to a
SQLite database and checks BeeGFS using SQL queries. As
shown in Table II, BeeGFS-FSCK can also detect or repair
diverse corruptions (i.e., D.,,,. and R_,,,), We discuss a few
sub-optimal cases below.

Wrong repair (Ry..). BeeGFS uses two empty files (i.e.,
dentry-by—-name and dent ry—by—1ID) to represent client
file’s name and its data chunk ID on OST. As shown in Fig. 2,
dentry-by—-name and dentry-by-ID share the same
inode via hard link [5]. However, when the “fghfs” extended

TABLE II: Summary of Checker Policy. This table summarizes the checker policies of LESCK and BeeGFS observed in our
experiments based on the detection (D) and repair (R) levels defined in §III. Green color means the corruption is detected or
repaired completely. Red color means the checker has abnormal behaviors or repairs the corruption in a wrong way. “*” means
the checker only checks the in-memory copy of the structure. “+” means the checker will hang if the structure is corrupted

zero

duplicate

out-of-sync

and repaired repeatedly. “— means the fault is not applicable to the structure.

Lustre Structures Jjunk
MDT-object —
OST-object Dzero|Rzero
llog record Dzerol|Rzero
FID on MDT Decom. |va’o‘
FID on OST Deom. |Rzero
FLDB Dzero|Rzero
OlI table *Decom. |Rzero
LOV EA *Dcom. |[Reom.
PFID Dpar. |Rpar.
linkEA Deom. |Reom.
nlink Dzerol|Rzero

Dzero|Rzer0

Dzero|Rzero

Dconthzero

Dconu|Rzero

Dzero|Rzero

*Dcown|Rzero
*Dll()'f”/. |RC()'TI’I,.
DCOWL|RCOWL

DCOWL|RCOWL

*Decom. |Rzero

DCOTTY/. |Ru)'r'o.

DCO’!YL. |RZ€’I"O

*D(;o’rn. |R(:U"m/.

DCO?’ILA ‘RCOTTL .

Dcowz. |+Rcom‘

Dabn. |Rze7’o
Dabn. |Rzero
Dzeroleero
Decom. |Rwr0.
Dzeroleero
Dzeroleero
*Decom. |Rco7n.
*D(ﬁ()’IrL. |R(,,’()”7L.
Dzeroleero

Dcom‘ |RCO7’)’L.

BeeGFS Structures

Jjunk

zero

duplicate

out-of-sync

dentry-by-name (MDT-object)
dentry-by-ID (MDT-object)
fhgfs (MDT-object)

chunk (OST-object)

content directory

nlink

size

DCO’NL. |R'UJ7‘O.

DZSTO ’RZQT‘O

*Dcom. |Rzero

*DCO’H’L. |R26T‘O

Decom. |Rw’r'o.
Dzero |Rzero
*Dcom. |Rzero

*DCO’I’TL. |RZ€’T’O

DCO’NL. |RZ€’I"O

DCOT)’L. |RCO7TL‘
DCOTTL. |RCOTTL.
D(l()’”l,. |RU7'I’().
DpCLT‘. ‘RZET‘O

DCOTTL‘ |Rcom‘

inode

chunk

data

OST-object

Fig. 2: Example of wrong repair operation on BeeGFS.
White/green/blue/yellow colors represent inode, extended at-
tribute, regular file, and user data, respectively.

attribute of the inode is corrupted, BeeGFS-FSCK will remove
the intact dentry-by-name. As a result, the client data
cannot be accessed.

Invalid option (R..;,). BeeGFS-FSCK seems to be more user-
friendly as it often prompts to users and provides repairing
options. However, the specified option may be ineffective. For
example, in case of junk or zero on “nlink” or “size”, BeeGFS-
FSCK offers to update the corresponding structure, but we find
that the structure is not actually updated.

C. Need for More Complete Test Cases

Both Lustre and BeeGFS have built-in test suites for their
checkers. For example, there are test cases designed for
Lustre’s FID, nlink, and BeeGFS’ chunk, nlink, size.

However, we still observe sub-optimal checking of these
structures. This implies that existing test suites are not enough,
which is consistent with previous studies [17].

V. DISCUSSION & FUTURE WORK

The work presented in this paper suggests many opportuni-
ties for further improvements. We discuss two major directions
in this section.

Scalability & Automation. Our current study involves much
manual effort (e.g., identifying PFS metadata types). To make
the methodology more scalable, we are building a frame-
work named PCHECK. We are exploring static analysis to
identify PFS metadata structures precisely. Also, to generate
more comprehensive PFS states, we are exploring the fuzzing
technique [31], [45] and more HPC workloads. Our goal is
to develop PCHECK into a generic framework that can fin-
gerprint the checker policies of diverse PFSes thoroughly and
efficiently, including PFSes without using local file systems
(e.g., IBM Spectrum Scale).

Enhancing PFS Checkers. Based on the fingerprinting re-
sults, we are exploring methods to improve state-of-the-art
PFS checkers. We will enrich the proposed PFS consistency
model and taxonomy to serve as a foundation for designing
complete checker policies. We plan to collaborate with PFS
developers and the community to explore new designs, so that
the robustness of PFSes can be improved to the next level.

VI. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful
feedback. We also thank Andreas Dilger for discussion on the
kernel panic problem. This work was supported in part by NSF
under grants CNS-1566554/1855565, CCF-1717630/1853714,
CCF-1910747, and CNS-1943204. Any opinions, findings, and
conclusions expressed in this material are those of the authors
and do not necessarily reflect the views of the sponsor.

[1]
[2]

[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
(1]

[12]

[13]
[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

REFERENCES
CloulLab. In https://www.cloudlab.us/p/ISU-Cloud/pcheck.
DDN acquires Lustre business from Intel. In

https://datacentrenews.eu/story/ddn-acquires-lustre-business-intel-
significant-investment-come.

debugfs. In https://man7.org/linux/man-pages/man8/debugfs.8.html.
e2fsck. In https://linux.die.net/man/8/e2fsck.

hardlink. In https://man7.org/linux/man-pages/manl/hardlink.1.html.
LIVERMORE COMPUTING CENTER . In
https://hpc.linl. gov/hardware/file-systems/parallel-file-systems.

Lustre Metadata Service (MDS) . In http://wiki.lustre.org/.

pcheck. In https://git.ece.iastate.edu/data-storage-lab/prototypes/pcheck.
RAID. In https://en.wikipedia.org/wiki/RAID.

xfs-check. In https://linux.die.net/man/8/xfs_check.

PFS corruption after upgrading from SQL Server 2014. In
https://www.sqlskills.com/blogs/paul/pfs-corruption-after-upgrading-
from-sql-server-2014/, 2014.

HPCC power outage event at Texas Tech. In
http://www.ece.iastate.edu/ mai/docs/failures/2016-hpcc-lustre.pdyf,
2016.

Lustre software release 2.x operations manual, 2017.

Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau. Information
and control in gray-box systems. In Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles, SOSP ’01, page 43-56,
New York, NY, USA, 2001. Association for Computing Machinery.
Remzi H. Arpaci-Dusseau. Operating systems: Three easy pieces. 2017.
BeeGFS File System Check (beegfs fsck).
https://www.beegfs.io/wiki/fscheck.

Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill,
and Dawson R. Engler. Exe: Automatically generating inputs of
death. In Proceedings of the 13th ACM Conference on Computer and
Communications Security (CCS), 2006.

Jinrui Cao, Om Rameshwar Gatla, Mai Zheng, Dong Dai, Vidya
Eswarappa, Yan Mu, and Yong Chen. PFault: A General Framework for
Analyzing the Reliability of High-Performance Parallel File Systems. In
Proceedings of the 2018 International Conference on Supercomputing
(ICS), 2018.

Jinrui Cao, Simeng Wang, Dong Dai, Mai Zheng, and Yong Chen. A
generic framework for testing parallel file systems. In 2016 Ist Joint
International Workshop on Parallel Data Storage and data Intensive
Scalable Computing Systems (PDSW-DISCS), 2016.

Joao Carreira, Rodrigo Rodrigues, George Candea, and Rupak Majum-
dar. Scalable Testing of File System Checkers. In EuroSysi2, 2008.
Alexander Conway, Ainesh Bakshi, Yizheng Jiao, William Jannen, Yang
Zhan, Jun Yuan, Michael A Bender, Rob Johnson, Bradley C Kuszmaul,
Donald E Porter, et al. File systems fated for senescence? nonsense, says
science! In Proceedings of the 15th USENIX Conference on File and
Storage Technologies (FAST), pages 45-58. USENIX Association, 2017.
Haryadi S. Gunawi et. al., Riza O. Suminto, Russell Sears, Casey
Golliher, Swaminathan Sundararaman, Xing Lin, Tim Emami, Weiguang
Sheng, Nematollah Bidokhti, Caitie McCaffrey, ary Grider, Parks M.
Fields, Kevin Harms, Robert B. Ross, Andree Jacobson, Robert Ricci,
Kirk Webb, Peter Alvaro, H. Birali Runesha, Mingzhe Hao, and
Huaicheng Li. Fail-Slow at Scale: Evidence of Hardware Performance
Faults in Large Production Systems. In Proceedings of the 16th USENIX
Conference on File andStorage Technologies (FAST), 2010.

Philip Schwan et al. Lustre: Building a file system for1000-node clusters.
In InProceedings of the 2003 Linuxsymposium, pages 380-386, 2003.
Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Redundancy does not imply
fault tolerance: Analysis of distributed storage reactions to file-system
faults. ACM Trans. Storage, 13(3), September 2017.

[25]

[26]

[27]

(28]

[29]
(30]
(31]

(32]

[33]
[34]
[35]

[36]

(37]

[38]

(39]

[40]

[41]

[42]
[43]
[44]

[45]

[46]
[47]

(48]

[49]

Om Rameshwar Gatla, Muhammad Hameed, Mai Zheng, Viacheslav
Dubeyko, Adam Manzanares, Filip Blagojevi¢, Cyril Guyot, and Robert
Mateescu. Towards Robust File System Checkers. In /6th USENIX
Conference on File and Storage Technologies (FAST), 2018.

Om Rameshwar Gatla and Mai Zheng. Understanding the fault resilience
of file system checkers. In 9th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage), 2017.

Om Rameshwar Gatla, Mai Zheng, Muhammad Hameed, Viacheslav
Dubeyko, Adam Manzanares, Filip Blagojevic, Cyril Guyot, and Robert
Mateescu. Towards robust file system checkers. ACM Trans. Storage
(T0S), 2018.

Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau,
and Remzi H. SQCK: A Declarative File System Checker. In OSDI’08:
Proceedings of the 8th USENIX conference on Operating systems design
and implementation, 2008.

Jan Heichler. An introduction to BeeGFS. 2014.

HPC User Site Census. 2016.

Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen
Xu, and Taesoo Kim. Finding semantic bugs in file systems with
an extensible fuzzing framework. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP 19, page 147-161,
New York, NY, USA, 2019. Association for Computing Machinery.
Jharrod LaFon, Satyajayant Misra, and Jon Bringhurst. On distributed
file tree walk of parallel file systems. In InProceedings of the Interna-
tional Conference on HighPerformance Computing, Networking, Storage
and Anal-ysis (SC’12), 2012.

LFSCK: an online file system checker for Lustre. 2017.

Lustre Software Release 2.x: Operations Manual. 2017.

Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. ffsck: The Fast File System Checker. In Proceedings of the
11th USENIX conference on File and Storage Technologies, 2013.
David Mosberger. Memory consistency models. SIGOPS Oper. Syst.
Rev., 27(1):18-26, January 1993.

Sarp Oral, Feiyi Wang, David Dillow, Galen Shipman, Ross Miller, and
Oleg Drokin. Efficient object storagejournaling in a distributed parallel
file system. . In InPro-ceedings of the 8th USENIX Conference on File
andStorage Technologies (FAST’10), 2010.

X. Ouyang, R. Rajachandrasekar, X. Besseron, H. Wang, J. Huang, and
D. K. Panda. CRFS: A Lightweight User-Level Filesystem for Generic
Checkpoint/Restart. In roceedings of the 2011 International Conference
onParallel Processing (ICPP’11), 2011.

Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal,
Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. IRON File Systems. In Proceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP), 2005.

Kai Ren, Qing Zheng, Swapnil Patil, and Garth Gibson. IndexFS:
Scaling file system metadata performance withstateless caching and
bulk insertion. In Proc. of the Intl. Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2014.

Jinghan Sun, Chen Wang, Jian Huang, and Marc Snir. Understanding and
Finding Crash-Consistency Bugs in Parallel File Systems. In HotStorage,
2020.

Ceph File System. http://docs.ceph.com/docs/master/.

OrangeFS Team. The OrangeFS project. 2015.

Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, and Jiesheng Wu. Lessons
and Actions: What We Learned from 10K SSD-Related Storage System
Failures. In 2019 USENIX Annual Technical Conference (ATC), 2019.
Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and
Taesoo Kim. Fuzzing file systems via two-dimensional input space
exploration. 2019 IEEE Symposium on Security and Privacy (SP), pages
818-834, 2019.

Fan Yong. Lustre consistency verification, 2014.

Mai Zheng, Joseph Tucek, Dachuan Huang, Feng Qin, Mark Lillibridge,
Elizabeth Yang, Bill Zhao, and Shashank Singh. Torturing Databases
for Fun and Profit. In Proceedings of 11th USENIX Conference on
Operating Systems Design and Implementation (OSDI), 2014.

Mai Zheng, Joseph Tucek, Feng Qin, and Mark Lillibridge. Understand-
ing the Robustness of SSDS under Power Fault. In Proceedings of 11th
USENIX Conference on File and Storage Technologies (FAST), 2013.
Mai Zheng, Joseph Tucek, Feng Qin, Mark Lillibridge, Bill W. Zhao,
and Elizabeth S. Yang. Reliability analysis of ssds under power fault.
ACM Trans. Comput. Syst. (TOCS), 2016.

