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Abstract—Pangeo is a community of scientists and software
developers collaborating to enable Big Data Geoscience analysis
interactively in the public cloud and on high-performance com-
puting (HPC) systems. At the core of the Pangeo software stack
is (1) Xarray, which adds labels to metadata such as dimensions,
coordinates and attributes for raw array-oriented data, (2) Dask,
which provides parallel computation and out-of-core memory
capabilities, and (3) Jupyter Lab which offers the web-based
interactive environment to the Pangeo platform. Geoscientists
now have a strong candidate software stack to analyze large
datasets, and they are very curious about performance differences
between the Zarr and NetCDF4 data formats on both traditional
file storage systems and object storage. We have written a
benchmarking suite for the Pangeo stack that can measure
scalability and performance information of both input/output
(I/O) throughput and computation. We will describe how we
performed these benchmarks, analyzed our results, and we will
discuss the pros and cons of the Pangeo software stack in terms
of I/O scalability on both cloud and HPC storage systems.

Index Terms—Pangeo, benchmark, cloud, HPC, object store,
throughput, I/O

I. INTRODUCTION

Geoscientists confront many challenges when attempting
to process Big Data. For example, climate scientists have
generated petabytes of data as part of the Coupled Model
Intercomparison Project (CMIP6) [1]. Such datasets are so
large they become difficult to deal with when the volume
of data exceeds computer memory or storage capacity. Under
such circumstances, scientists tend to access and analyze only
a small percentage of the total data, instead of analyzing
the entire dataset. How to make this Big Data accessible
and easy to analyze by scientists is the goal of the Pangeo
community [2]–[5].

The core components of the Pangeo software stack [6]
include Xarray [7], Dask [8], and Jupyter [9]. Xarray is an
open source Python package for computing with labeled multi-
dimensional arrays. Xarray employs the same Common Data
Model that is used by NetCDF [10], which is a self-describing
scientific data format and is widely used in the geosciences.

Xarray’s labeled array structure is used by many other
Pangeo software packages and many computation and vi-

sualization tools. Dask provides a flexible mechanism for
parallel data analytics. Dask is used internally within Xarray
to provide scalability in the Pangeo platform. Dask’s lazy
execution of code allows for delaying the loading of extremely
large datasets into memory until the final necessary step,
and its distributed schedulers allow supercomputers and cloud
computing clusters to easily perform parallel computations in
batch mode and interactively with Jupyter notebooks. Xarray’s
data structures implement a layer around NumPy [28] (in-
memory) or Dask (out-of-memory) arrays. Jupyter provides
the interactive development environment to the Pangeo plat-
form, allowing scientists to interactively run HPC jobs, read
and write large files and plot results.

Our Pangeo benchmarking suite uses Xarray to read and
write Dask arrays from/to NetCDF files or Zarr stores and
uses Dask to schedule and run benchmarking jobs on high
performance computing clusters (HPC) and cloud compute
platforms, such as AWS [12]. The benchmarks are run in-
teractively via Jupyter Notebook so as to provide a great
user experience during debugging and visualization of results.
Our benchmarking suite reads and writes both NetCDF [10]
and Zarr [11] data to measure I/O throughput performance.
NetCDF is both a data format and a collection of data access
libraries for self-describing, array-like data, commonly used
by geoscientists to create, read/write, and share scientific data.
NetCDF is developed and maintained by Unidata [10] and
is widely used in areas such as climatology, meteorology,
oceanography and GIS, for weather forecasting and climate
change research. Zarr is both a data format and an open
source Python package delivering data access functions for
chunked, compressed, multi-dimensional arrays. Zarr arrays
can be saved as a key-value store on object storage systems and
as a hierarchical directory store on POSIX [18] file systems.

With Dask, the Pangeo stack can load small chunks of
data from 100GB+ datasets, providing a low-memory footprint
that enables scientists to potentially analyze large datasets
on their laptop. Similarly, Dask provides an easy mechanism
for parallelizing I/O, regardless of the data format (Zarr or
NetCDF). The question we have asked in motivating this



benchmarking study is, “When does it make sense to use
NetCDF or Zarr?” Is Zarr only useful on object storage
systems? Or is it also performant on POSIX-based file storage
systems? And which data format is best on which storage
system?

II. BENCHMARKING VARIABLES

We set up several varying parameters for our tests: the
storage system (POSIX or object), the data format (NetCDF
or Zarr), Dask chunk size Schunk, and Dask cluster size (i.e.,
number of HPC nodes) Nnode.

A. Storage system: object store vs. POSIX-compliant file sys-
tems

The HPC system we used in our benchmarks was the
Cheyenne supercomputer at the National Center for Atmo-
spheric Research’s (NCAR’s) [16] Wyoming Supercomputing
Center (NWSC) [17]. It features 145,152 Intel Xeon processor
cores in 4,032 dual-socket nodes (36 cores/node) and 313
TB of total memory. The traditional POSIX-compliant [18]
data storage system was provided by DataDirect Networks
(DDN) [19] and transfers data at the rate of 200 GBps and
has a total usable capacity of 38PB. It uses a high-performance
GPFS [29] shared file system.

Additionally, an ActiveScale object storage system from
Quantum [20] has also recently been deployed at the NWSC.
This object storage [14] system has 5PB of usable capacity
and can transfer single-stream data at 160 MBps (8 GBps
aggregate total) and is AWS S3 compliant. S3 object storage
is essentially a key-value storage system. The keys are unique
strings, and the values are bytes of data. Data is read and
written using HTTPS calls. Object storage does not follow
a hierarchical model or use a directory tree. Instead, every
discrete unit of data is collected in a single flat repository. This
unique design makes object storage more scalable, meaning
that we can make thousands of concurrent reads and writes
easily. For instance, AWS S3 provides 3500 PUT and 5500
GET requests per second for each prefix of a bucket [22].

We employed the fsspec Python package [21] in our
benchmarks to abstract the storage layer. For example, fsspec
uses the same API to open a NetCDF file on POSIX or S3. The
fsspec package is a Python library for working with different
storage technologies and to manipulate remote file systems
such as s3fs [24] (an interface to S3) or gcsfs [23] (an inter-
face to Google Cloud Storage). Thus, our benchmarking suite
is easy to extend to different cloud storage systems. Since all
of our test data is local on the same HPC system, we need not
download or transfer data. Instead, we can directly measure the
system’s read/write performance from/to the storage systems.
See Figure 1 for these two system configurations.

B. Data format: NetCDF vs. Zarr

With these two different storage systems, we tested two data
formats: NetCDF and Zarr. Figure 2 illustrates the structure
of a Zarr store persisted on a POSIX filesytem. With the
chunked data design, Zarr is an ideal format for object storage.

Fig. 1: Storage system configurations

Xarray (with Dask) can read and write both formats on a
POSIX file system. On S3, Xarray (with Dask) can read and
write Zarr, and it can read (not write) NetCDF. Since writing
NetCDF data directly to S3 is currently not supported, we
generate the NetCDF dataset on the POSIX system and then
upload the data to S3 storage for testing. Also, since it takes a
very long time to write a NetCDF file exceeding 5GB, we
used Xarray’s save mfdataset function to write multiple
NetCDF files in parallel [15], improving the NetCDF write
throughput significantly. In this study, we always generated
eleven NetCDF files for this purpose.

C. Dask chunk size

We wrote this benchmarking suite not to depend on existing
data. Instead, we generated data on the fly using Xarray to
create a Dataset with 1 data variable sst having 3 dimensions:
time, lon (longitude), and lat (latitude). We then randomly
generated the values of the data array (sst). We chunked the
sst data array as shown in Figure 3. Each chunk size Schunk

ranges from 64MB to 768MB, and the number of chunks
Nchunk is computed according to:

Nchunk = dSchunk/(lon ∗ lat ∗ typesize)e , (1)

where typesize is the size (in bytes) of the data variable
datatype. Thus, the chunks displayed in Figure 3 have the
following shape:

chunks = (N chunk, lon, lat) . (2)

By varying the chunk size, we can find out which in-memory
chunk size provides the best read/write performance.



D. The number of HPC nodes

We vary the number of HPC nodes used in these bench-
marks to evaluate how the I/O throughput scales. We create a
Dask cluster with Dask workers across multiple processors. To
do this, we use Dask Jobqueue [26] to create a Dask cluster
on our HPC system using the PBS [27] job scheduler. Our
benchmarking suite varies the size of the Dask cluster from 1
to 12 whole Cheyenne compute nodes (i.e., exclusive access
to all 36 cores on a single node) to ensure no other jobs could
run on the node. While each Cheyenne compute node has 36
cores, only 10 cores are used for Dask workers, one thread per
worker, allowing approximately 11GB of memory per worker
(109GB of memory per node).

III. BENCHMARKING STANDARD AND SETUP

We have chosen the read throughput and write throughput as
our benchmarking standards. We developed our benchmarking
suite to perform both weak and strong scaling studies of the
Pangeo stack to obtain them.

A. Weak scaling study

Our weak scaling study measured the read/write throughput
as the number of nodes varied for a fixed dataset size per
processor. The scaled read/write throughput is calculated as
the total dataset size divided by the total run time. Ideally,
the throughput is expected to scale linearly with respect to the
number of cores with a positive slope smaller than one.

In this study, we fixed the chunk size Schunk, using 10
chunks per worker and 10 workers per node, and varied the
total dataset size Stotal with the number of nodes Nnode as
shown here:

Stotal = Schunk ∗N node ∗ 10 ∗ 10 . (3)

We performed four different weak scaling studies using
4 different fixed chunk sizes Schunk of 64, 192, 384 and
786 MB. For each study, the number of nodes Nnode was
changed over the values 1, 2, 3, 6, and 12. In total, 120
different configurations of alternative operation (read or write),
data format, storage system, node count, and chunk size were
performed as part of the weak scaling study. We ran each
configuration 3 or 4 times to obtain a total of 391 runs on the
Cheyenne supercomputer.

B. Strong scaling study

Our strong scaling study measured the read throughput (no
write) as the number of nodes varied for a fixed total dataset
size. From this study, we can ascertain an upper limit on the
scaling of object storage for the two different data formats by
measuring the total read time for each configuration of the
study. In this analysis, we fixed the total dataset size Stotal

at 460 GB. The number of nodes Nnode was changed over
1, 2, 3, 6, and 12, and the chunk size Schunk was varied
across 64, 192, 384 and 768 MB, with the number of chunks
Nchunk computed from Equation (1). The total number of

Fig. 2: A Zarr Store on POSIX

Fig. 3: Dask chunks

chunks Ntotal was computed according to (4), such that the
total dataset size stayed constant.

N total = Stotal/(N chunk ∗ lon ∗ lat ∗ typesize) . (4)

In total, 80 configurations of varying data format, storage
system, node count, and chunk size were performed as part of
the strong scaling study. We ran each configuration 4 to 7 times
to obtain a total of 489 runs on the Cheyenne supercomputer.

To fine tune Zarr reading, we set
use listings cache=True in fsspec.filesystem,
which reduced read times. Also, we set
skip instance cache=True to make sure no file data
caching was done during benchmarking.

IV. PERFORMANCE ANALYSIS AND DISCUSSION

A. Weak scaling analysis

The weak scaling study results for the read and write opera-
tions on Cheyenne are shown in Figures 4 and 5, respectively.

The read study shows that NetCDF on POSIX is roughly
20% faster than Zarr on POSIX, and both are 10 times better
than Zarr on S3, which is almost certainly caused by the S3
store having a maximum 8 GBps aggregate stream while the
POSIX system has a maximum 200 GBps transfer rate. The
best read scaling for Zarr on the POSIX system was found
using a 768MB chunk size and is shown in the red lines on
Figures 4(b). These lines show roughly linear scaling with the
number of nodes, as we expect.

The write study shows that Zarr on the POSIX system has
the best performance and scales linearly with increasing node
count (Figure 5(b)). Due to Zarr’s one-file-per-chunk format,
Zarr on the POSIX system is 10% faster than NetCDF on
the POSIX system with 1 node, and 9 times faster with 12



nodes (Figures 5(b) and 5(a) red lines). Zarr on S3 is 50%
slower on 1 node than NetCDF, and 45% faster on 12 nodes
(Figures 5(c) and 5(a)). Our study shows that Zarr write
performance scales better than NetCDF write performance on
either storage system, which makes Zarr look like an appealing
option for actual model output and not simply data analysis.

Note that the optimal performance with Zarr is obtained
with a chunk size between 384MB and 768MB, and scaling
with these chunk sizes is better than with other smaller chunk
sizes.

Large chunk sizes reduce the total number of chunks leading
to less communication overhead but larger memory usage.

(a)

(b)

(c)

Fig. 4: Weak scaling analysis results for read throughput using the
Cheyenne supercomputer. The x-axis displays increasing number
of nodes for each test. The y-axis shows the corresponding values
of read throughput. The chunk sizes of 64, 192, 384, and 786 MB
are shown with green, blue, orange and red colors, respectively.
The solid lines connect the median read throughput on varying
number of nodes, and the error bars indicate a single standard
deviation from the mean value. From the top, Figures (a), (b)
and (c) show NetCDF on POSIX, Zarr on POSIX and Zarr on
S3, accordingly. Note: Figure (c) ranges in 0 to 7000 MBps which
is different from Figures (a) and (b).

B. Strong scaling analysis

The strong scaling study results for the read operation
on Cheyenne with the POSIX storage system and S3 object
storage system are shown in Figures 6 and 7, respectively.

(a)

(b)

(c)

Fig. 5: Weak scaling analysis results for the write throughput using
the Cheyenne supercomputer. The x-axis displays increasing
number of nodes for each test. The y-axis shows the correspond-
ing values of write throughput. The chunk sizes of 64, 192, 384,
and 786 MB are shown in green, blue, orange and red colors,
respectively. The lines connect the medians of write throughput
on varying number of nodes, and the error bars indicate a single
standard deviation from the mean value. From the top, Figures
(a), (b) and (c) show NetCDF on POSIX, Zarr on POSIX, Zarr
on S3 accordingly. Note: Figure (b) ranges in 0 to 16000 MBps
which is different from Figures (a) and (c).

Reads of NetCDF data from POSIX are 0–45% faster than
reads of Zarr on POSIX. The comparison between the two
data formats with chunk size 64 MB on 1 nodes gives the 45%
difference, 0% occurred at chunk size 64 MB on 12 nodes,
and average 30% on 6 and 15% on 12 nodes for any chunk
size. This indicates NetCDF has better performance on POSIX
systems, but Zarr scales better as shown in Figures 6(a) and
6(b). Another observation is that Zarr test results have larger
standard deviations, tests on the daytime and nighttime can
have quite different outcomes because the available network
bandwidth varies largely in a day. If we want to use the Zarr
format on POSIX systems, we will likely need greater network
bandwidth.

Reads of NetCDF data from S3 are 3% slower to 13%
faster than reads of Zarr data on S3 with 1 node, roughly 6%
faster on 6 nodes, and then 8% faster with 2 and 12 nodes as
shown in Figures 7(a) and 7(b). Overall, there is no significant



(a)

(b)

Fig. 6: Strong scaling analysis results for POSIX read throughput
using Cheyenne supercomputer. The x axis displays increasing
number of nodes for each test. The y axis shows the correspond-
ing values of read throughput. The chunk sizes of 64, 192, 384, and
786 MB are in the green, blue, orange and red colors respectively.
The lines connect the medians of read throughput on varying
number of nodes, and the error bars indicate a single standard
deviation from the mean value. From the top, figures (a) and (b)
show the NetCDF on POSIX, Zarr on POSIX, accordingly.

difference between these two test sets. Again, this could be due
to S3 storage having 8 GBps aggregate transfer rate at most.
Dask’s parallelism scales well with both data formats until
using 6 nodes, starting to saturate when using 12 nodes, and
NetCDF appears to saturate sooner than Zarr. A chunk size of
192 MB was found to be the optimal chunk size during this
study.

V. CONCLUSIONS AND FUTURE WORK

The Pangeo community is working to provide geoscientists
with a powerful software stack to generate and analyze data
in parallel. However, scientists are concerned about whether
this software stack and I/O performance with the Zarr format
is comparable to traditional analysis methods with NetCDF.
Additionally, scientists are concerned about what to expect
from object storage systems in comparison with traditional
POSIX filesystems, especially as cloud-based analysis be-
comes increasingly popular. We have made a first attempt at
addressing these concerns with this Pangeo I/O benchmarking
study.

Our weak scaling analysis shows that write rates with
Zarr are 9 times better than those for NetCDF on POSIX
systems, since Zarr’s chunked data format with Dask improves
parallelism and obtains the optimal scaled write speedup.
While we could have parallelized over more NetCDF files, the
case considered is more common, aggregating multiple data
chunks in a single NetCDF file. When using fewer processor
counts, read rates with Zarr on POSIX are slower than those

(a)

(b)

Fig. 7: Strong scaling analysis results for S3 read throughput using
Cheyenne supercomputer. The x axis displays increasing number
of nodes for each test. The y axis shows the corresponding values
of read throughput. The chunk sizes of 64, 192, 384, and 786 MB
are in the green, blue, orange and red colors respectively. The
lines connect the medians of read throughput on varying number
of nodes, and the error bars indicate a single standard deviation
from the mean value. From the top, figures (a) and (b) show the
NetCDF on S3, Zarr on S3, accordingly.

for NetCDF on POSIX. With increasing processor counts,
Zarr’s read rates are almost identical to those of NetCDF.
Read and write rates of Zarr on S3 object store show good
scaling as well, but are much slower than those for Zarr on our
POSIX system. This is likely limited due to the slower data
transfer rate from NCAR’s S3 object store. The strong scaling
analysis further indicates that read throughput of NetCDF and
Zarr on S3 are identical. This can be seen as reassurance for
geoscientists that the read performance will remain intact, if
not better, if they switch from NetCDF to Zarr. Numerous
benefits come with such a switch, including parallel output
with both lossy and lossless compression and flexible storage
APIs. The Zarr format within the Pangeo software stack will
be definitely beneficial to the geoscience community.

In the future, we intend to run this benchmarking suite on
available cloud platforms with high throughput scalable object
storage, such as on Amazon AWS and Google Cloud Platform.
We will also study asynchronous I/O with NetCDF and Zarr
to check if it can improve the I/O performance.

Currently, the code for these benchmarks [25] is available
at GitHub and can be executed with the appropriate Conda
environment from a clone of the git repository. In the future,
the suite will use a Docker container for easy use.
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