
Emulating I/O Behavior in Scientific Workflows on
High Performance Computing Systems

Fahim Chowdhury† Yue Zhu† Francesco Di Natale‡ Adam Moody‡

Elsa Gonsiorowski‡ Kathryn Mohror‡ Weikuan Yu†
†Florida State University ‡Lawrence Livermore National Laboratory

{fchowdhu, yzhu, yuw}@cs.fsu.edu {dinatale3, moody20, gonsiorowski1, mohror1}@llnl.gov

Abstract—Scientific application workflows leverage the ca-
pabilities of cutting-edge high-performance computing (HPC)
facilities to enable complex applications for academia, research,
and industry communities. Data transfer and I/O dependency
among different modules of modern HPC workflows can increase
the complexity and hamper the overall performance of workflows.
Understanding this complexity due to data-dependency and
dataflow is an essential prerequisite for developing optimization
strategies to improve I/O performance and, eventually, the entire
workflow. In this paper, we discuss dataflow patterns for workflow
applications on HPC systems. As existing I/O benchmarking tools
lack in identifying and representing the dataflow in modern
HPC workflows, we have implemented Wemul, an open-source
workflow I/O emulation framework, to mimic different types
of I/O behavior demonstrated by common and complex HPC
application workflows for deeper analysis. We elaborate on the
features and usage of Wemul, demonstrate its application to HPC
workflows, and discuss the insights from the performance analysis
results on Lassen supercomputing cluster at Lawrence Livermore
National Laboratory (LLNL).

I. INTRODUCTION

The leadership HPC supercomputers continuously run thou-
sands of scientific application workflows every day [29]. In
most cases, these workflows are executed to answer impor-
tant inter-disciplinary research questions in astronomy, en-
vironmental science, medical studies, etc., by multiple data-
dependent applications. The workflow applications can consist
of thousands or even millions of dependent or independent
tasks [21]. These workflows can generate or transfer terabytes
to even petabytes of data per science campaign [13], [22].
Complex data-dependency among different modules of the
workflows and transfer of a humongous volume of data
can create a severe bottleneck and hinder the research and
development in critical scientific studies. Holistic perception
of the dataflow present in a workflow is an indispensable
prerequisite to the eventual optimization of the I/O behavior
and improvement of the workflow runtime.

At present, there are numerous benchmarking tools for
evaluating the storage systems on HPC facilities [30], [8],
[5]. Besides, popular profiling tools, e.g., Darshan [3], expose
internal I/O patterns in HPC applications. While the existing
benchmarking tools provide parameterized methods to repli-
cate a real application I/O workload tentatively; there is not
much emphasis on the data-dependency and dataflow related
complexity posed by HPC workflows. Oftentimes, it is difficult
to study dataflow issues in real-world HPC workflows. Access

to actual workflow source code due to proprietary reasons
or tight coupling of a workflow with specific supercomput-
ing infrastructure are some mentionable reasons behind this
challenge.

Taking these challenges into account, we develop Wemul,
a workflow I/O emulation framework that can generate I/O
workloads like conventional benchmarking tools through user-
defined parameters and mimic complex dataflow with or
without cycles represented by graphs. This framework pro-
vides users with a generic interface to flexibly replicate
both complex and straightforward HPC workflow workloads.
Moreover, it can push the workloads to real systems and help
the storage system researchers expose HPC storage systems’
capabilities or limitations in handling dataflow challenges
through systematic characterization and performance analysis.
All in all, it focuses on lessening the semantic gap between
existing synthetic and real application benchmarks for deep
comprehension of the HPC workflow I/O behavior.

In this paper, we discuss three simple I/O workloads in
HPC workflows, i.e., deep learning (DL) training, producer-
consumer, and checkpoint/restart I/O, and emulate those for
further analysis. We demonstrate a technique of representing
complex workflows as graphs and feeding to the emulation
framework for performance analysis and real systems’ evalua-
tion. To precisely examine the I/O behavior and challenges in
HPC workflows, we make the following contributions in this
work:

• We present our study on HPC workflow I/O challenges
and workloads.

• We develop Wemul to generate different types of HPC
workloads and discuss its functionalities.

• We run a performance analysis of Lassen’s storage system
by I/O benchmarking via Wemul’s features.

II. UNDERSTANDING I/O IN HPC WORKFLOWS

A. HPC Workflow I/O Workloads

1) Workflows with Simple Data-dependency:
a) Deep Learning Training I/O: In DL application train-

ing with data-parallel setup, a dataset, typically kept on parallel
file systems (PFS), is randomly shuffled and distributed among
the processes of an application to import at the beginning
of each epoch. The data units or files in the dataset are
usually tiny (i.e., 100KB) in size, which creates huge metadata



(a) DL training

(b) Inter-node producer-consumer

00:00:00 00:00:10 00:00:20 00:00:30 00:00:40 00:00:50 00:01:00 00:01:10

A
ll 

p
ro

ce
ss

e
s

hours:minutes:seconds

Timespan from first to last access on files shared by all processes (POSIX and STDIO)

read
write

Timespan from first to last access on files shared by all processes

(c) Checkpoint/restart

Fig. 1: Simple dataflow emulation timelines on GPFS

overhead [19]. In Fig. 1(a), we demonstrate how Wemul
generates a workload similar to a typical DL training I/O
pattern, where each process is assigned multiple files to read
from a small dataset of 320 1 MiB files on a General Parallel
File System (GPFS) mount point.

b) Producer-Consumer I/O: Simulation and analysis
workflows or experimental and observational data analy-
sis workflows often create producer-consumer relationships
among the workflow’s applications or tasks [29]. When the
producer and consumer tasks are assigned to the same node to
create an intra-node data-dependency, node-local fast storage
systems like burst buffers can be used to transfer data. On the
contrary, inter-node producer-consumer cannot take advantage
of the client-side caching in PFS or the on-node storages. Be-
sides, mutually interacting applications can engender a chain
of I/O requests. Fig. 1(b) depicts an emulation of inter-node
producer-consumer dataflow. This experiment with Wemul on
GPFS demonstrates a gap between write and read operations
that can slow down the entire workflow runtime.

c) Checkpoint/Restart I/O: Checkpointing is one of the
most common I/O workloads posed by HPC workflows. It
mainly helps with fault tolerance [29], [27], [17]. In a typical
case, one process or a set of processes is assigned to create
checkpoints in a user-defined frequency. In the latest super-
computers, the checkpoint files can be staged on node-local
or shared burst buffer made of fast persistent storage devices.
These data can be flushed to PFS asynchronously according
to user specification. In the case of any process crash, all the
processes restart by loading data from the latest checkpoint
file and restoring the application to the last stable state. As
shown in Fig. 1(c), one process is assigned to write checkpoint
files to GPFS in a loop. Later, Wemul randomly breaks the
checkpointing loop with a user-defined error rate to emulate a

crash. Finally, all the processes emulate a restart by searching
for the latest checkpoint file and reading it.

2) Workflow with Complex Data-dependency: Unlike the
straightforward well-known I/O behaviors previously dis-
cussed, the modern HPC workflows can have much complexity
in the dataflow pattern. One example of a complicated work-
flow is the one for the cancer moonshot pilot 2 (CMP2) project
run by a Multi-scale Machine-learned Modeling Infrastructure
(MuMMI) [22] on Sierra [11] at LLNL. This project aims
to improve cancer diagnosis by leveraging HPC systems. It
simulates the RAS protein and cell membrane interaction for
early-stage cancer cell detection. As shown in Fig. 2, this

Workflow Management and ML Selection

Macro-scale Analysis

Micro-scale Analysis

In-memory patches

RAMDisk CGSim data

GPFS data

Write/read file/data

WM process

Macro-scale sim

Micro-scale sim

Micro-scale analysis

ML Process

…

…

… … …

Snapshots

…

…

…

In-memory
Priority Queue

Of Patches

Flux

Maestro

…

Patches

…

…

…

…

…

…

…

…

…

Snapshots
Feedback

Fig. 2: Dataflow in CMP2 HPC implementation

workflow has three basic steps. Firstly, it writes snapshot data
to GPFS via the macro-scale analysis application. Secondly,
the machine learning module starts when a snapshot file is
ready and creates a priority queue of patches. These patch files
are written to the PFS again and treated as input to the further
coarse-grained (CG) particle analysis. Finally, in the CG setup
stage, the input patches go through preprocessing and pass
to the CG simulation step, i.e., micro-scale sim. Hence, the
CMP2 workflow’s dataflow creates a chain of data transfer.
Later, the CG simulation output is written to RAMDisk on
Sierra [11] and fed to CG analysis, i.e., micro-scale analysis.
CG analysis generates the final output snapshot and sends
feedback data to the macro-scale simulation application.

It is challenging to mimic and analyze this type of complex
workflow behavior using existing benchmarking tools that lack
the provision of specifying data-dependency among the work-
flow modules. Besides, running the entire workflow like this
is tightly bound to specific supercomputers [11], [12]. These
situations motivate us to design a workflow I/O emulation
framework for an in-depth study of HPC workflows with
complex dataflow.

III. EMULATING HPC WORKFLOW I/O

A. Wemul: A Workflow I/O Emulation Framework

1) Software Architecture: Wemul is an open-source1 MPI-
enabled C++ framework for emulating HPC workflow I/O

1https://github.com/LLNL/Wemul



workloads with the provision for specifying data-dependencies
among workflow applications and tasks. Currently, it has
five execution modes, i.e., DL training, producer-consumer
I/O, checkpoint/restart, app-based, and dag-based I/O work-
loads. As shown in Fig. 3, emulator is the entry point that
exposes the functionalities of the framework to the users.
The parameter values are recorded in the config attributes
module. The dataflow emulator, derived from a generic work-
flow emulator, is the factory for creating different types of
I/O workloads according to the user-defined configuration.
Besides, app workload, dag workload, deep learning, etc.,
implement the base dataflow workload class. At present,
Interleaved-Or-Random (IOR) [7] can be optionally utilized
from deep learning module through ior runner class. The
extensible design of Wemul allows more robust usage of IOR
in the future to generate workload with a finer granularity
of I/O configuration parameters. Moreover, Asynchronous
Transfer Library (AXL) [1] can be imported as a library from
the checkpoint restart module for staging the data files in and
out according to user parameters.

emulator

instantiates and 
runs

user input

creates

uses

libaiori.a

libaxl.so

libkvtree.so

uses
uses

uses

workflow_emulator

dataflow_emulator

config_attributes

dataflow_emulator::

create_dataflow_workload

dataflow_emulator::

dataflow_emulator

ior_runner

dataflow_workload

checkpoint_restart deep_learning producer_consumer

dataflow_emulator::

run

workflow_emulator::

run
main

deep_learning::

emulate

dataflow_workload::

emulate

ior_runner::

run

app_workload dag_workload

calls

implements

implements

Fig. 3: Class diagram of Wemul

2) Emulating Complex Workflow Data-dependencies:
Wemul provides an interface to describe an entire workflow
in two types of strategies using a workflow specification file
format inspired by DAGMan [20]. Firstly, users can define
applications with a unique application ID, name, number of
processes, and estimated wall time. Secondly, the user can go
into a finer granularity and define the tasks, where multiple
tasks can represent each application of the workflow. In both
cases, the user can specify data units, typically files, present
in the workflow with its name and size. Finally, a section in
the file expresses strict or non-strict parent-child relationships
between applications or tasks and data units. If the relationship
is strict, a child task or application cannot proceed until
a parent data is ready to be consumed. This task-data or
application-data associativity specification can expose dataflow
in cyclic or acyclic workflows as a generic graph data structure.
If the dataflow creates a cycle, Wemul extracts the directed
acyclic graph (DAG) from the original graph and runs the
DAG multiple times. If a cycle does not have any non-strict
relationship, Wemul throws an error as the workflow can create
a deadlock.

Fig. 4 depicts how a small scale adaptation of the CMP2
workflow can appear after the DAG extraction in Wemul. In
a single node setup with eight processes shown in Fig. 4(a),

T2T1

D1

T3

D2 D3

T5 T6

D4 D5

T7 T8

D6 D7 D8

T4

(a) 1 node
8 processes
emulation

T2_2T1_2

D1_2

T3_2

D2_2 D3_2

T5_2 T6_2

D4_2 D5_2

T7_2 T8_2

D6_2 D7_2D8_2

T4_2

T2_1T1_1

D1_1

T3_1

D2_1 D3_1

T5_1 T6_1

D4_1 D5_1

T7_1 T8_1

D6_1 D7_1 D8_1

T4_1

(b) 2 nodes 16 processes
emulation

Fig. 4: Emulating dataflow in CMP2

we represent T1 and T2 as macro-scale analysis tasks, T3 and
T4 as machine learning application, T5 and T6 as micro-scale
simulation, and T7 and T8 as micro-scale analysis tasks. The
Dx vertices represent the data units associated with the tasks.
An incoming edge to a task vertex denotes data read, and an
outgoing one represents data write. The workflow looks like
Fig. 4(b) when scaled up to two nodes.

3) Execution Modes: Wemul has five execution modes.

1) DL training: Wemul can be fed with a dataset directory
full of files that are traversed, assigned equally to each
process, and read in parallel.

2) Producer-consumer: there can be two types of producer-
consumer workloads, i.e., intra-node and inter-node.
Besides, the framework can be run as a producer-only
or consumer-only application.

3) Checkpoint/restart: user can assign one or more pro-
cesses to perform periodic checkpointing and random
crash according to an error rate. Later, the framework
searches the latest checkpoint file and reads it from all
the processes on emulated restart.

4) Application-based: Wemul runs as a standalone applica-
tion in this mode. Users can set the lists of files and
mount points to read or write, block size and segment
count, and access patterns through parameters.

5) DAG-based: user can set a path to a graph representation
file of the entire workflow as a parameter. Wemul extracts
the DAG and mimics the workflow.

4) Functionality and Usage: Wemul takes the information
about a workload execution from the user via command-line
parameters. The parameters are categorized into six basic
classes. Firstly, the “General” category has the parameters
related to the initialization of the framework, i.e., type of
emulation (kept for future extension), subtype to specify an
execution mode, and input directory to specify storage system
mount point. Besides, there are some generic I/O pattern-
related parameters like block size and segment count of the
I/O requests in a workload. The rest of the categories are
execution mode-specific. For instance, the “Application-based”
category has parameters to set the file and mount point lists



Category Parameter Description

General

−− type < type name > Type of the emulation, i.e., data
−− subtype < subtype name > Subtype of dataflow emulation, i.e., app, cr, dag, dl, pc
−− input dir < path > Mount point or path to storage system to use
−− block size < sizeinbytes > Block size per read or write request
−− segment count < number > Total number of blocks or segments, i.e., filesize = blocksize x #(segments)

DL training −− use ior Enable using IOR as a library
−− num epochs < number > Number of epochs in the DL training experiment
−− comp time per epoch < timeinseconds > Computation emulation per epoch

Producer-consumer

−− inter node Enable placing producer and consumer processes on different nodes
−− producer only Enable running Wemul as a standalone producer application
−− consumer only Enabling running Wemul as a standalone consumer application
−− ranks per node < number > Feed ranks per node number to help intra- or inter-node data transfer

Checkpoint/restart

−− num ck ranks < number > Number of checkpoint file writer ranks
−− num ck files per rank < number > Number of checkpoint files to write by each rank
−− checkpointing interval < timeinseconds > Interval between two checkpointing
−− ck error rate < percentagevalue > Error rate at which application crash emulation occurs
−− num ck iter < number > Maximum iteration count for the checkpointing

Application-based

−− read input dirs < dir1 : dir2 : .. > Colon separated list of mount points to storage systems for reading
−− read filenames < file1 : file2 : .. > Colon separated list of files to be read
−− read block size < sizeinbytes > Block size for the files to be read
−− read segment count < number > Segment count for the files to be read
−− file per process read Enable file-per-process read (shared read by default)
−− write input dirs < dir1 : dir2 : .. > Colon separated list of mount points to storage systems for writing
−− write filenames < file1 : file2 : .. > Colon separated list of files to be written
−− write block size < sizeinbytes > Block size for the files to be written
−− write segment count < number > Segment count for the files to be written
−− file per process write Enable file-per-process write (shared write by default)

DAG-based −− dag file < filepath > Path to the file with the graph representation of workflow

TABLE I: Important user parameters of Wemul

for reading and writing, and file access patterns. “DAG-based”
category has the parameter that takes the path to the file
with graph representation of the entire workflow. Some men-
tionable parameters for “DL training”, “Producer-consumer”,
and “Checkpoint/restart” are the number of epochs, inter-node
enabler, and the number of checkpointing ranks, respectively.
Table I shows the usage of some important parameters in more
detail.

IV. EXPERIMENTAL RESULTS

A. Testbed and Workload

We run all the experiments on Lassen [9], a 795 nodes IBM
Power9 supercomputer with 44 cores and 256 GB memory
per node situated at LLNL. Besides, it has a 24 PB IBM’s
Spectrum Scale GPFS, burst buffer with 1.6 TB NVMe PCIe
SSD on each node, and node-local RAMDisk. We run all the
five execution modes with Darshan-3.1.7 [3] and report the
read/write bandwidth and latency for an increasing number of
nodes from 1 to 16 with eight processes per node. We run
each experiment five times and take the mean and standard
error of the bandwidth and latency values. During a prior
experiment, using the IOR benchmarking tool with sequential
file-per-process I/O on GPFS, we got ∼186 GiB/s read, and
∼190 GiB/s write bandwidth for 16 nodes.

B. Performance Analysis using Wemul

1) Emulation of Simple Data-dependency:
a) Deep Learning Training Emulation: For the experi-

ments with DL training execution mode, we keep a 320 GiB
dataset on Lassen’s GPFS mount point. The dataset has
327680 1 MiB files arranged equally in 320 subdirectories.
Wemul traverses the dataset directory tree and generates a file

list, and distributes the files equally among all the processes.
We run each training emulation for three epochs with a
random shuffling of the file list at the beginning of each
epoch. Each process is assigned fewer files to read with an
increasing number of nodes. Hence, as shown in Fig. 5(a),
the read latency decreases from 467 to 27 seconds for 1 to 16
nodes, respectively. Consequently, the average aggregated read
bandwidth increases to ∼12 GiB/s for 16 nodes. It is much
lower than GPFS’s read bandwidth capabilities due to random
read access and huge metadata overhead compared to the read
size.

b) Producer-consumer Emulation: We generate a simple
producer-consumer emulation in this mode. Each producer
process is assigned exactly one file to write with the user-
defined block size and segment count. The consumer coun-
terpart polls until the file assigned to it is ready and reads
it using MPI collective I/O operation. This is an inter-node
producer-consumer workload. The file size of 32 GiB is de-
fined by 256 MiB blocks arranged in 128 segments aggregating
∼2.2 TiB data for 16 nodes. As shown in Fig. 5(b), for 16
nodes, Wemul demonstrates 118 GiB/s read and 142 GiB/s
write bandwidth, and 128 seconds read and 106 seconds write
latency. This experiment shows adequate bandwidth due to the
simplicity of the dataflow.

c) Checkpoint/restart Emulation: For emulating basic
checkpoint/restart workload, we run Wemul to write 32 GiB
checkpoint files with 10% error rate. Rank 0 is assigned to
write the checkpointing file, and on a random crash emulation,
each process looks for the latest checkpoint and reads the
whole file. Fig. 5(c) depicts that the checkpoint writing band-
width is low, ∼4 GiB/s for 16 nodes, as it is written by only
one process. The maximum read bandwidth is 160 GiB/s for



1 2 4 8 16
Number of Nodes

0

2000

4000

6000

8000

10000

12000

14000

Ba
nd

wi
dt

h 
(M

iB
/s

)

read_bw

0

100

200

300

400

500

600

700

La
te

nc
y 

(s
)

read_latency

(a) Deep learning training

1 2 4 8 16
Number of Nodes

0

50000

100000

150000

200000

Ba
nd

wi
dt

h 
(M

iB
/s

)

read_bw
write_bw

0

50

100

150

200

La
te

nc
y 

(s
)

read_latency
write_latency

(b) Producer-consumer

1 2 4 8 16
Number of Nodes

0

50000

100000

150000

200000

Ba
nd

wi
dt

h 
(M

iB
/s

)

read_bw
write_bw

0

20

40

60

80

100

La
te

nc
y 

(s
)

read_latency
write_latency

(c) Checkpoint/restart

Fig. 5: Analysis of workflow emulation with simple dataflow on GPFS

16 nodes. Write latency values show a random trend due to the
randomness of crash emulation in Wemul’s implementation.

1 2 4 8 16
Number of Nodes

0

50000

100000

150000

200000

Ba
nd

wi
dt

h 
(M

iB
/s

)

read_bw
write_bw

0

500

1000

1500

2000

2500

3000

3500

4000

4500

La
te

nc
y 

(s
)

read_latency
write_latency

(a) Application-based

1 2 4 8 16
Number of Nodes

0

5000

10000

15000

20000

25000

30000

35000

40000

Ba
nd

wi
dt

h 
(M

iB
/s

)

read_bw
write_bw

0

100

200

300

400

500

La
te

nc
y 

(s
)

read_latency
write_latency

(b) DAG-based

Fig. 6: Analysis of complex dataflow emulation on GPFS

2) Emulation of Complex Data-dependency:
a) Application-based Emulation: In this case, we gener-

ate a workload with three stages of data movement. Firstly,
all the processes in the first application instance write half of
the number of processes 32 GiB files on Lassen’s GPFS in
a shared write manner. Secondly, another application instance
reads the files from the first stage through shared access and
writes 16 GiB files in a file-per-process access pattern. Finally,
another application instance reads the files written by the
second application in a file-per-process manner and writes half
of the number of processes 32 GiB files via shared access.
The total data size increases up to ∼6 TiB for 16 nodes.
As shown in Fig. 6(a), both read and write bandwidth reach
up to 160 GiB/s and 130 GiB/s for 16 nodes, respectively.
We observe that the data transfer cannot reach GPFS’s IOR
reported performance due to data-dependency. There can be
two possible reasons behind the high variability of the results.
Firstly, the experiments might have used GPFS in a busy
window. Secondly, avoiding cache cancellation mechanisms in
each experiment run to replicate real-world workflow scenarios
can bring about very high bandwidth in some of the runs by
leveraging GPFS caching.

b) DAG-based Emulation: As shown in Fig. 6(b), we
run the same workflow discussed in Sec. III-A2. Each file in
the experiment is of 32 GiB size. The dataflow here is more
convoluted than that in producer-consumer and application-
based workloads. It has a combination of both shared and
file-per-process access in the same stage. We observe that the
read bandwidth increases with the increasing number of nodes
topping ∼34 GiB/s for 16 nodes, while the write bandwidth
suffers and does not scale up well and decreases to ∼5 GiB/s
for 16 nodes. On the other hand, the read latency stays down

to around 50 seconds, and the write latency goes up to about
370 seconds for 16 node runs. The results clearly show how
workflows with complex dataflow put I/O challenges on PFSs.

V. RELATED WORK

Classic synthetic I/O benchmarking tools are typically used
to evaluate the underlying system by mimicking real-world
applications [28], [15], [23]. IOzone [8] is a file system
evaluation tool with functionalities to stress the underlying
system but has less focus on relating the performance re-
sults with HPC applications. Flexible I/O tester (fio) [5] and
Filebench [4] are leveraged to generate application workloads
and test the I/O performance of a storage system. Unfortu-
nately, these benchmarks are not focused on characterizing I/O
on HPC workflows and do not support parallel I/O interfaces
like MPI-IO, HDF5, etc., required by scientific applications.
IOR [30], [7] exposes users to many flexible I/O request
parameters to create HPC application-like I/O workloads.
However, it does not provide mechanisms to address the data-
dependency in workflows.

Contributions on characterizing and understanding work-
flow I/O have been made in the HPC community by directly
running HPC application benchmarks with profiling tools [31],
[25], [24], [33], [18]. There are some interesting I/O intensive
scientific applications, e.g., CM1 [2], Montage [10], etc.,
that are often used to evaluate storage systems. There have
been efforts to extract the I/O kernel from important HPC
applications for the isolated analysis of the data movement. For
example, HACC I/O [6], FLASH3 I/O [16], VPIC I/O [34],
etc., are the I/O kernels of Hardware/Hybrid Accelerated
Cosmology Code (HACC), Vector Particle-In-Cell (VPIC),
FLASH code, etc., that focus on MPIIO, Parallel-NetCDF,
and HDF5, respectively. However, all of these benchmarks are
application-specific and not flexible enough to be extended as
a generic platform for evaluating HPC application workflows.

I/O workload modeling and simulation tool, e.g., I/O Work-
load Abstraction (IOWA) [32], can generate workload from
different sources, like I/O traces, I/O kernels, mathemati-
cal models, etc. Again, Multi-purpose, Application-Centric,
Scalable I/O Proxy Application (MACSio) [26] provides an
interface to create proxy applications that support various I/O
interfaces and parallel I/O for multi-physics HPC applications.
However, none of these generates workloads from a workflow
perspective, and neither has any facility to address data-
dependency among the modules of a workflow, and each task
is assumed to deal with an independent stream of data.



VI. CONCLUSION

Complex dataflow can pose additional I/O challenges and
hinder workflow performance. Clear understanding and proper
characterization of I/O is a prerequisite for developing opti-
mization strategies to handle these issues. We develop Wemul,
an open-source HPC workflow I/O emulation framework, to
create a bridge between synthetic and application benchmarks
by providing a generic platform to mimic parallel I/O work-
loads with data-dependencies posed by scientific application
workflows on HPC systems. In the future, we will enable
Wemul to generate workloads in a finer I/O pattern granularity
by adapting features from IOR’s configuration space. Besides,
we can use existing techniques [14] to work on the automatic
and user-friendly generation of graph representation files. For
providing support for parallel I/O interfaces other than MPI,
e.g., HDF5, NetCDF, ADIOS, etc., we plan to add another
layer of abstraction for I/O library types in the implementation.
HPC I/O researchers’ community can use Wemul as a bench-
marking tool to analyze the I/O challenges in complicated
workflows, and evaluate optimization strategies and policies
to overcome those.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344. LLNL-CONF-813999. 2

REFERENCES

[1] Asynchronous Transfer Library. https://github.com/ECP-VeloC/AXL.
[2] CM1. https://www2.mmm.ucar.edu/people/bryan/cm1.
[3] Darshan. https://www.mcs.anl.gov/research/projects/darshan.
[4] Filebench. http://www.iozone.org.
[5] Flexible I/O Tester (FIO). https://fio.readthedocs.io/en/latest.
[6] HACC I/O. https://github.com/glennklockwood/hacc-io.
[7] IOR and MDTest. https://github.com/hpc/ior.
[8] IOzone. http://www.iozone.org.
[9] Lassen. https://hpc.llnl.gov/hardware/platforms/lassen.

[10] Montage. http://montage.ipac.caltech.edu/docs/grid.html.
[11] Sierra. https://hpc.llnl.gov/hardware/platforms/sierra.
[12] Summit. https://www.olcf.ornl.gov/summit.
[13] The Large Hadron Collider. http://home.cern/topics/

large-hadron-collider.
[14] B. Behzad, H. Dang, F. Hariri, W. Zhang, and M. Snir. Automatic

generation of i/o kernels for hpc applications. In 2014 9th Parallel
Data Storage Workshop, pages 31–36, 2014.

[15] Peter M. Chen and David A. Patterson. A new approach to i/o
performance evaluation: Self-scaling i/o benchmarks, predicted i/o per-
formance. In Proceedings of the 1993 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems, SIGMETRICS
’93, page 1–12, New York, NY, USA, 1993. Association for Computing
Machinery.

[16] Ching, Choudhary, Wei-keng Liao, Ross, and Gropp. Efficient struc-
tured data access in parallel file systems. In 2003 Proceedings IEEE
International Conference on Cluster Computing, pages 326–335, 2003.

[17] F. Chowdhury, F. Di Natale, A. Moody, E. Gonsiorowski, K. Mohror,
and W. Yu. Understanding I/O Behavior in Scientific Workflows on High
Performance Computing Systems. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis 2019 (SC19), Regular Poster, Nov. 2019.

2This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer,
or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall
not be used for advertising or product endorsement purposes.

[18] Fahim Chowdhury, Jialin Liu, Quincey Koziol, Thorsten Kurth, Steven
Farrell, Suren Byna, and Weikuan Yu. Initial characterization of i/o in
large-scale deep learning applications. 2018.

[19] Fahim Chowdhury, Yue Zhu, Todd Heer, Saul Paredes, Adam Moody,
Robin Goldstone, Kathryn Mohror, and Weikuan Yu. I/o characterization
and performance evaluation of beegfs for deep learning. In Proceedings
of the 48th International Conference on Parallel Processing, ICPP 2019,
pages 80:1–80:10, New York, NY, USA, 2019. ACM.

[20] Peter Couvares, Tevfik Kosar, Alain Roy, Jeff Weber, and Kent Wenger.
Workflow Management in Condor, pages 357–375. Springer London,
London, 2007.

[21] Ewa Deelman, Tom Peterka, Ilkay Altintas, Christopher D Carothers,
Kerstin Kleese van Dam, Kenneth Moreland, Manish Parashar, Lavanya
Ramakrishnan, Michela Taufer, and Jeffrey Vetter. The future of
scientific workflows. The International Journal of High Performance
Computing Applications, 32(1):159–175, 2018.

[22] F. Di Natale, H. Bhatia, T. S. Carpenter, C. Neale, S. K. Schumacher,
T. Oppelstrup, L. Stanton, X. Zhang, S. Sundram, T. R. W. Scogland,
G. Dharuman, M. P. Surh, Y. Yang, C. Misale, L. Schneidenbach,
C. Costa, C. Kim, B. D’Amora, S. Gnanakaran, D. V. Nissley, F. Streitz,
F. C. Lightstone, P. Bremer, J. N. Glosli, and H. I. Ingólfsson. A
massively parallel infrastructure for adaptive multiscale simulations:
Modeling ras initiation pathway for cancer. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’19, New York, NY, USA, 2019. Association
for Computing Machinery.

[23] Samuel A. Fineberg. Implementing the nht-1 application i/o benchmark.
SIGARCH Comput. Archit. News, 21(5):23–30, December 1993.

[24] Glenn K Lockwood, Shane Snyder, Suren Byna, Philip Carns, and
Nicholas J Wright. Understanding data motion in the modern hpc data
center. In 2019 IEEE/ACM Fourth International Parallel Data Systems
Workshop (PDSW), pages 74–83. IEEE, 2019.

[25] J. Luttgau, S. Snyder, P. Carns, J. M. Wozniak, J. Kunkel, and T. Lud-
wig. Toward understanding i/o behavior in hpc workflows. In 2018
IEEE/ACM 3rd International Workshop on Parallel Data Storage Data
Intensive Scalable Computing Systems (PDSW-DISCS), pages 64–75,
2018.

[26] M. C. Miller. Multi-purpose, application-centric, scalable i/o proxy
application, version 00, 6 2015.

[27] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. Design,
modeling, and evaluation of a scalable multi-level checkpointing system.
In SC ’10: Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis,
pages 1–11, 2010.

[28] A. L. Narasimha Reddy and Prithviraj Banerjee. A study of i/o behavior
of perfect benchmarks on a multiprocessor. In Proceedings of the 17th
Annual International Symposium on Computer Architecture, ISCA ’90,
page 312–321, New York, NY, USA, 1990. Association for Computing
Machinery.

[29] Robert Ross, Lee Ward, Philip Carns, Gary Grider, Scott Klasky,
Quincey Koziol, Glenn K. Lockwood, Kathryn Mohror, Bradley Settle-
myer, and Matthew Wolf. Storage Systems and I/O: Organizing, Storing,
and Accessing Data for Scientific Discovery. 5 2019.

[30] Hongzhang Shan, Katie Antypas, and John Shalf. Characterizing and
predicting the i/o performance of hpc applications using a parameterized
synthetic benchmark. In Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing, SC ’08. IEEE Press, 2008.

[31] S. Snyder, P. Carns, K. Harms, R. Ross, G. K. Lockwood, and N. J.
Wright. Modular hpc i/o characterization with darshan. In 2016 5th
Workshop on Extreme-Scale Programming Tools (ESPT), pages 9–17,
2016.

[32] Shane Snyder, Philip Carns, Robert Latham, Misbah Mubarak, Robert
Ross, Christopher Carothers, Babak Behzad, Huong Vu Thanh Luu,
Surendra Byna, and Prabhat. Techniques for modeling large-scale
hpc i/o workloads. In Proceedings of the 6th International Workshop
on Performance Modeling, Benchmarking, and Simulation of High
Performance Computing Systems, PMBS ’15, New York, NY, USA,
2015. Association for Computing Machinery.

[33] Teng Wang, Suren Byna, Glenn K Lockwood, Shane Snyder, Philip H
Carns, Sunggon Kim, and Nicholas J Wright. A zoom-in analysis of i/o
logs to detect root causes of i/o performance bottlenecks. In CCGRID,
pages 102–111, 2019.

[34] Kesheng Wu, Surendra Byna, and Bin Dong. Vpic io utilities. [Computer
Software] https://doi.org/10.11578/dc.20181218.4, dec 2018.


