
Gauge: An Interactive Data-Driven Visualization
Tool for HPC Application I/O Performance Analysis

Eliakin del Rosario∗, Mikaela Currier∗, Mihailo Isakov∗, Sandeep Madireddy†,
Prasanna Balaprakash†, Philip Carns†, Robert B. Ross†, Kevin Harms†, Shane Snyder†, Michel A. Kinsy∗

∗ Adaptive and Secure Computing Systems (ASCS) Laboratory
Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843

{mihailo,eliakin.drosario,mkinsy}@tamu.edu
† Argonne National Laboratory, Lemont, IL 60439

smadireddy@anl.gov, {pbalapra,carns,rross,ssnyder}@mcs.anl.gov, harms@alcf.anl.gov

Abstract—Understanding and alleviating I/O bottlenecks in
HPC system workloads is difficult due to the complex, multi-
layered nature of HPC I/O subsystems. Even with full visibility
into the jobs executed on the system, the lack of tooling makes
debugging I/O problems difficult. In this work, we introduce
Gauge, an interactive, data-driven, web-based visualization tool
for HPC I/O performance analysis.

Gauge aids in the process of visualizing and analyzing, in
an interactive fashion, large sets of HPC application execution
logs. It performs a number of functions met to significantly
reduce the cognitive load of navigating these sets - some worth
many years of HPC logs. For instance, as its first step in many
processing chains, it arranges unordered sets of collected HPC
logs into a hierarchy of clusters for later analysis. This clustering
step allows application developers to quickly navigate logs, find
how their jobs compare to those of their peers in terms of I/O
utilization, as well as how to improve their future runs. Similarly,
facility operators can use Gauge to ‘get a pulse’ on the workloads
running on their HPC systems, find clusters of under performing
applications, and diagnose the reason for poor I/O throughput.
In this work, we describe how Gauge arrives at the HPC jobs
clustering, how it presents data about the jobs, and how it can
be used to further narrow down and understand behavior of sets
of jobs. We also provide a case study on using Gauge from the
perspective of a facility operator.

Index Terms—High-Performance Computing, I/O Analysis,
Visualization, Clustering, Machine Learning.

I. INTRODUCTION

High-performance computing (HPC) HPC systems are built
to accelerate scientific or business workloads. Not all types
of programs are easy to accelerate, however. In this work,
we focus on I/O-bounded programs that struggle to make
good use of the available I/O bandwidth. Since a modern
HPC I/O subsystem is multilayered and orders of magnitude
more complex than that of single-node machines, debugging
I/O problems is difficult. Several tools such as Darshan [1]
and Ellexus Mistral [2] were created to provide visibility into
this problem. While these tools can help record I/O utilization
issues, HPC system users still need tools that can help detect
and diagnose when jobs are underperforming because of poor
I/O usage.

Darshan is a lightweight HPC I/O characterization tool that
instruments HPC jobs and collects their I/O access patterns.
The logs Darshan collects are the main window an expert has

into the workloads running on HPC systems. In our study,
we analyzed 89,844 Darshan logs collected from the Argonne
Leadership Computing Facility (ALCF) Theta supercomputer,
in the period from May 2017 to March 2020 [3].

While Darshan offers a number of utilities for visualizing
logs and exporting a record of an HPC job, these tools work
on a per-log basis. To work with bulk logs, users have to
manually aggregate Darshan outputs, write scripts, or, in the
best-case scenario, rely on the facility to provide, for example,
a year of logs in a CSV format. Even for simple tasks such as
counting the number of times a certain application has been
run or the total I/O volume transferred by a set of jobs, users
have to create ad hoc scripts. Even with support for easy data
manipulation, diagnosing I/O problems while working on large
tabular datasets is not trivial. Although experts can provide
insight for a specific job, this approach is not scalable when
attempting to apply analysis on a large set of similar jobs or
when simply exploring a dataset searching for possible issues.
In this work we present Gauge: a tool that can allow I/O
experts and facility operators to better scale their efforts and,
instead of analyzing single logs, apply their insight on clusters
of very similar HPC jobs.

Gauge is a web-based, data-driven, highly interactive explo-
ration and visualization tool meant for diagnosing HPC I/O
behaviors and problems. The goals of Gauge are as follows:

• Facilitating easy exploration and navigation in the high-
dimensional space of Darshan logs

• Clustering similar jobs in order to reuse expert analysis
and scale expert effort better

• Providing actionable reports for discovered I/O issues

Gauge has two target audiences: facility operators may
use Gauge to deal with system-wide problems and work to
increase the overall performance of the HPC cluster, and sci-
entists and application developers may use Gauge to improve
their jobs and diagnose the sources of low I/O throughput.
In the following sections we explain how Gauge clusters and
presents HPC jobs in a navigable hierarchy; we discuss how
users can use Gauge to understand the I/O behaviors of clusters
of jobs; and we present a case study on using Gauge from
the perspective of a facility operator. We invite the reader



to evaluate Gauge at ascslab.org/research/gauge, where we
expose an instance of Gauge with which the user can explore
anonymized Theta logs. Additionally, Gauge is open-source
and available in the reproducibility appendix [4].

II. CLUSTERING METHODOLOGY

The goal of this section is to show that (1) analyzing clusters
instead of individual jobs allows us to better utilize expert
insight without sacrificing analysis accuracy, (2) there exists
a “natural,” intuitive way to cluster HPC jobs, and (3) there
exist methods that can objectively show that one clustering
method is superior to another on our problem domain.

A. Preliminaries

In this work we cluster and visualize 89,844 Darshan logs
that have an I/O volume larger than 100 MiB. These logs
were collected at the Argonne Leadership Computing Facility
(ALCF) Theta supercomputer in the period between May 2017
and March 2020. Darshan [5] is an HPC I/O characterization
tool that collects I/O access pattern of jobs running on a sys-
tem. While it supports multiple different APIs such as POSIX,
MPI-IO, and STDIO, in this work we focus on POSIX.
Darshan instruments a job and collects hundreds of aggre-
gate values such as runtime, number of processes, read/write
accesses, bytes read or written to shared or unique files, I/O
access patterns per each file, and timestamps of first file open
and close operations. Our preprocessing pipeline removes a
significant number of unimportant or redundant features, It
summarizes each job using 53 features: 14 absolute-values
features such as runtime, I/O throughput, total data volume,
total number of files, bytes, and accesses, as well as 39 relative
(percentage) features such as read-to-write ratio, percentage of
accesses of certain sizes, and consecutive accesses. The feature
engineering used in this work is explained in more detail in [3].

B. Clustering HPC jobs

All of the HPC system logs used in this work can be treated
as unlabeled data. Until experts provide labels or categorize
each log, we cannot attempt to map new logs to existing
categories or mark a log as, for example, “high performance”
or “inefficient.” Cluster analysis methods attempt to separate a
set of data points into a number of groups so that data points
within a group share some underlying property or behavior.
Clustering data points such as individual HPC jobs into groups
of similar samples works under the assumption that there exists
some underlying structure to be unraveled. To evaluate this
assumption, we apply principal component analysis (PCA)
to our HPC log dataset. Here, the 53-dimensional space of
Darshan features is (linearly) compressed down into just two
dimensions, with these two dimensions explaining 61.4% of
the data variance. In Figure 1 we show a 2-dimensional
histogram of the PCA space with two components, with job
density shown on a logarithmic axis. Although the whole
dataset is globular in two dimensions and does not have any
visible structure to it (left), zooming into a dense region
reveals the existence of many small clusters of jobs (dark

−5 0 5
1st PCA component

−4

−2

0

2

4

6

2n
d 

PC
A

 c
om

po
ne

nt

−1.0 −0.5 0.0 0.5 1.0
1st PCA component

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

100

101

Jo
b 

de
ns

ity

Fig. 1. Two-dimensional PCA projection of the collected Darshan logs.

red spots in the zoomed-in figure on the right). Evidently,
even in this highly compressed space, significant structure
exists. We expect that adding more dimensions will reveal
further separation within the dataset. However, plotting high-
dimensional spaces is difficult, so we will rely on clustering
to reveal structure.

C. Choice of clustering method

Choosing an appropriate clustering algorithm is challenging
because we do not have a clear method to evaluate which
clustering (a “clustering” being a single mapping of samples
to clusters) is better, other than relying on expert intuition.
However, we can apply the following criteria: (1) our cluster-
ing method should be relatively insensitive to its parameters —
i.e., not require expert tuning, and (2) it should be insensitive
to noise and random initialization of seeds. Therefore, we first
seek a method to compare two clusterings in terms of their
similarity.

Several information-theoretic methods [6], [7] have been
proposed to compare two clusterings. In this work we use
variation of information (VI) [6] since it solves many of
the issues previous clustering metrics had. If a clustering
carries some information about the sample-cluster mapping,
VI measures how much information is gained and how much
is lost by switching from one clustering to another. Low
VI values imply that two clusterings are very similar, since
the information contained in the two clusterings has a large
overlap. Large VI values imply that the clusterings carry very
different information (e.g., by both being random sample-
cluster mappings) or that one clustering contains significantly
more information than another. We use VI to evaluate how
consistent different methods are in terms of their parameters /
seeds and whether different methods arrive at similar cluster-
ings. We evaluated four clustering algorithms: k-Means, mean-
shift clustering (MSC) [8], expectation maximization using
Gaussian mixture models (EMGMM), and DBSCAN [9]. Our
experiments show that only DBSCAN consistently arrives
at similar clusterings for both different parameter configura-
tions and different random initializations (graphs omitted for
space reasons). DBSCAN is an agglomerative, density-based,
nonparametric clustering algorithm that works by iteratively
clustering together samples that are within an ε distance of
each other. This imposes no structure on the shape or the

ascslab.org/research/gauge


number of clusters, making DBSCAN an excellent tool for
clustering data from new applications.

D. Hierarchical clustering of HPC data

The size and number of DBSCAN clusters depend on the
choice of the epsilon (ε) parameter. Large ε values cause all
jobs to be clustered in a single cluster, while small value
cause all jobs to belong to individual clusters. Although we
can experiment with this value on our dataset, it presents two
problems: (1) when applying clustering to a new dataset (e.g.,
from a new supercomputer), we may need to tune this value
again, and (2) a single ε value does not reveal hierarchical
structure (e.g., which clusters will get combined together if
we were to increase ε).

To fix these problems, we opt to use HDBSCAN, a hierar-
chical version of DBSCAN that, instead of running DBSCAN
using a single ε value, can be seen as running a grid search
over all values and retaining information about which clusters
merge into which and at what ε values. HDBSCAN is useful
because instead of just providing a mapping between samples
and clusters, it creates a tree where branches are clusters
and leaves are individual jobs. For a deeper discussion of
HDBSCAN and HPC job clustering, see [3]. In Figure 2 we
provide an example hierarchical clustering of HPC jobs built
by using HDBSCAN.

We can interpret the tree in the figure as follows: each
circle in the graph represents a cluster of jobs, it’s radius
is proportional to the number of jobs in the cluster, and it’s
vertical position specifies the ε value at which HDBSCAN
creates / breaks up the cluster. The lower the nodes are in
the graph, the less jobs they have and the more dense they
are. As the ε parameter value used by DBSCAN is lowered,
each cluster eventually splits into two smaller clusters. This
is visualized with the parent and child clusters connected by
the branches. The top node of the tree represents a cluster that
contains all 89,844 jobs in our dataset. This top node splits
into two branches, meaning there exist broadly two classes
of jobs in the dataset. By using Gauge, we discover that
the main difference between the two branches are their I/O
patterns: the left branch contains jobs that have mostly large
write access sizes (in the 100 KiB+ range) and a balanced
amount of reads and writes, whereas the jobs in the right
branch use smaller write sizes and are write-heavy. Similar
analyses can be applied to other nodes in the tree. Another
way of interpreting the tree is by looking at the tree topology.
We observe that the tree consists of multiple branches that
have many small clusters “falling off” of them. Periodically,
these branches also split into two branches of similar sizes.
Tall branches represent clusters that are stable for a large
range of ε values. These clusters are dense, so they are
insensitive to changes in ε in that range. As we reduce ε,
small outlier clusters are separated from the more populous,
‘main’ branches, but the main clusters are largely unaffected
and maintain their size. However, if these clusters consist
of smaller, denser clusters, at a certain ε value these main
branches will bifurcate.

9/4/2020 GAUGE

68.183.128.99:3000 1/1

ASCS LAB

VIEW

Fig. 2. Gauge clustering hierarchy built by using HDBSCAN. Each node is a
cluster of jobs. Each node connects a parent (higher) and child (lower) cluster,
where the parent contains all of the child’s jobs, plus some. Each cluster’s
height represents the ε value at which that cluster is split into smaller clusters.

III. HPC I/O PERFORMANCE ANALYSIS USING GAUGE

The goal of Gauge is to provide an interactive environment
where application developers and facility operators can (1)
quickly determine jobs of interest, (2) evaluate whether these
jobs are behaving as expected, (3) compare and contrast these
jobs with previous runs of the same application or similar
jobs, and (4) extract sensible information to better understand
why jobs are performing as they do, improve their future jobs,
and develop greater insight into the workloads running on the
system.

In a nutshell, Gauge is a web application that consumes
unorganized logs of HPC jobs and provides a hierarchical,
interactive visualization of the workloads that ran on the
system. Gauge aims to offer several levels of granularity at
which to view jobs from high-level clusters arranged in a tree
structure to condensed sets of graphs for each user-selected
cluster in the tree down to the fine-grained views of each
job and each logged feature in a cluster. In the next three
subsections, we describe each of these views.

A. Gauge Clustering Hierarchy

In Figure 2, we show Gauge’s hierarchical clustering.
Through interaction with the users, we built a number of
features that ease navigation in the tree. Hovering over a node
displays the cluster ε parameter and number of jobs, and for
further analysis the user can click the nodes to reveal key
details about the cluster. The nodes in the hierarchy can be
colored by the size of each cluster, the ε value of each cluster,
or by whether a cluster contains jobs from a specified user or
app. One of the more useful features is coloring by feature
value. Here, by averaging a user-specified feature’s values
over all of the jobs in the cluster, we determine the cluster’s
color. For example, by selecting to color clusters by their I/O
throughput, we can visually find high- and low-performing
jobs in terms of their I/O utilization.



Fig. 3. Gauge cluster visualization. Every time a cluster in the hierarchy is
selected, this type of column is created with the cluster’s data.

B. Gauge Per-Cluster Visualization

Selecting a cluster creates a column with details pertaining
to that cluster, for example, which users ran the jobs in the
cluster; which applications do these jobs belong to; what are
the runtimes, I/O volumes, or other features of these jobs; and
what are the common I/O access sizes that these jobs made. In
Figure 3 we show an example column that is displayed when
a user clicks on a cluster from Figure 2.

The column consists of five graphs. The first two graphs
(first row) are bar charts that show the distribution of users
that ran the jobs, and the applications that the jobs belong
to. If the number of users or applications exceeds 5, the
first 4 are shown, and the remainder are grouped in the final
“other” column. The coloring of these charts proves important
in graphs to follow.

The next two graphs (second and third row) show parallel
coordinate plots of different sets of features. Each broken line

represents one job, and its position on each of the axes (5
axes on the second row, 6 on third row) specifies that job’s
feature values for the axes’ feature. The two graphs differ in
the type of features they present. The graph in the second
row shows features with percentage values, for example, the
percentage of read accesses or write-only files. These values
are always bounded in the [0%, 100%] range, so the axes have
fixed ranges. The other graph (third row) presents absolute-
valued features such as a job’s I/O throughput, I/O volume,
runtime, or the number of files used by the job. Note that
despite these axes having different dimensions (e.g., MiB/s,
GiB, s), for clarity and readability we use a single unitless
axis shown on the left of the graph. Since each cluster will
have a different range for its jobs’ values, each column needs
to have a separate range plotted. Having multiple separate
ranges complicates comparison between the selected clusters,
so Gauge offers an option to use a unified range across all
the selected columns. This range is calculated by using the
smallest and largest values of any job in the selected cluster.
Another feature Gauge offers is the choice of how the lines
are colored. Right now, Gauge offers coloring jobs by their
user (where jobs from different users have different colored
lines), and similarly coloring by application.

The fifth graph (fourth row) shows the distribution of access
sizes, broken up by reads and writes and by common access
sizes. When collecting logs, instead of storing access sizes
of each individual R/W access, Darshan collects aggregate
metrics and reports the number of accesses for each “bin.”
We use the same bins to present the read and write accesses.
Note that this bar plot presents averages across the cluster and
may be unreliable for highly diverse clusters.

C. Gauge Cluster Parallel Coordinate Plots

Although these graphs offer information about 31 different
features of the cluster’s jobs, a user may want to analyze a
specific combination of features or may want to observe only
a subset of the jobs in the cluster. To allow such analyses,
Gauge also includes a full-page, highly customizable parallel
coordinates plot based on HiPlot [10] that can be called
for each cluster individually. With the ability to select any
combination of the 53 recorded features, the HiPlot package
allows users to visualize interactions between features that may
otherwise go unnoticed in the cluster columns described above.
By using HiPlot, Gauge lets the user quickly add or remove
selected jobs, color jobs based on any of the selected features,
or even change the type of axis used for each feature (the user
can choose between using a linear, logarithmic, percentage, or
categorical scale). The user’s selections are stored so that any
following HiPlot selection modals will automatically apply
those decisions. In Figure 4, we show an example HiPlot
parallel coordinates plot for a cluster.

D. Gauge Software Architecture

Gauge consists of a Python and Flask server and a React-
based front end. The back end parses a directory of Darshan
logs, runs these logs through a preprocessing pipeline that



Fig. 4. HiPlot view of a cluster with two different applications: quantum chromodynamics (blue) and quantum materials (orange).

sanitizes the data and applies feature engineering, and clusters
the data using HDBSCAN. The back end and front end are
Dockerized to allow easy deployment on new machines and
new datasets. Since our only assumption about the dataset is
that it is stored in a directory and consists of Darshan log files,
one can easily run Gauge on other supercomputers or clusters
that are using Darshan for instrumenting HPC jobs.

The Gauge front end is built using React [11] and Ma-
terialUI and uses D3 [12] and HiPlot [10] for the graphs.
React is a front-end JavaScript library that, with the help of
React contexts, provides seamless data flow throughout the
application. The styling for the application was based primarily
around MaterialUI because of its professional components and
ease of use. We use the D3 graph plotting library because of
its maturity and vast feature set. We use HiPlot for full-page
parallel coordinate plots because of HiPlot’s unprecedented
interactivity and excellent user experience.

IV. CASE STUDY

As a case study, we present how a facility operator can
use Gauge to comb through the logs and highlight clusters of
interest. For this example, an ALCF I/O expert performed an
open-ended exploration of logs in search of jobs that do not
obey conventional wisdom in terms of I/O performance.

The I/O expert identified the cluster shown in Figure 3 as
exhibiting strange behavior. Here, the majority of jobs in the
cluster belong to a quantum chromodynamics and a quantum
materials application. Both applications perform primarily read
accesses and have relatively similar I/O volumes and number
of processes. Despite being similar, however, the runs of the
two applications differ by several orders in magnitude for both
runtime and I/O throughput. These differences are uncommon:
other clusters that Gauge identified (at the same DBSCAN ε
value) have less variance for those two features.

The I/O expert used the HiPlot feature of Gauge to gain
further insight into the cluster, shown in Figure 4. The expert

colored jobs by application and moved the I/O throughput
axis (POSIX RAW agg perf by slowest) all the way to the
left. Several conclusions can be made from the figure: (1)
applications transfer similar amounts of data (200 MiB – 2
GiB range), (2) the majority of orange jobs have 5 times larger
I/O throughput compared with blue jobs, (3) both applications
almost exclusively perform read accesses, and (4) the blue
application opens a larger number of files. We note, however,
that this last conclustion may not be important since jobs from
both applications use thousands of processes.

On a suspicion, the I/O expert then added
another column to HiPlot (the rightmost axis
POSIX RAW FILE ALIGNMENT). Here we can see
that jobs from different applications have different file
alignments (256 KiB vs. 1 MiB). Different file alignments
hint at the possibility that these applications might be using
files on different filesystems. Indeed, after further inspection
using Darshan summary plots, it became clear that the slower
application reads primarily files on the home filesystem,
while the faster application uses files on Lustre. Even though
the slower application obviously will benefit from moving
its files to Lustre, a scientist who develops an application
on a local machine can easily make such a mistake. Despite
being briefed on using the HPC system, it may be difficult
for the scientist to debug this issue without the manual
involvement of an I/O expert. Similarly, a facility may have
a hard time spotting such inefficacies in their workloads and
may underutilize the HPC system’s potential. Gauge offers
a more efficient method for helping developers accelerate
their workloads and for helping facility operators extract the
maximum out of the system. Furthermore, Gauge provides a
rapport that can be used by the facility operators to support
their insights, speeding up communication between developers
and administrators.



V. RELATED WORK

Several works have tackled automating performance anal-
ysis of HPC jobs. Paradyn [13] is a tool that measures the
performance of HPC applications by dynamically instrument-
ing the application. Similarly, Periscope [14] also searches
for performance problems. Unlike Paradyn, Periscope uses
two separate monitoring approaches. One of these monitoring
approaches is the Peridot monitor which focuses on OpenMP
and MPI performance data and the cache monitor that focuses
on the memory hierarchy. In addition, both of these tools offer
a lightweight visualization interface to quickly display tabular
metrics and graphs. Another HPC performance analysis tool is
VAMPIR [15]. VAMPIR takes a given application trace and
transforms it into a variety of graphical views such as state
diagrams, activity charts, statistics and other useful displays.

The limitation of these tools lays in that the performance
analysis is done on single application. In the case of Paradyn
and Periscope, the hypotheses used to search for performance
problems must be precisely defined because these tools will
only instrument the parts of the application that are relevant
to the defined performance problem.

Gauge, on the other hand, behaves more like a log analyzer
similar to Splunk [16] and the ELK stack [17]. Gauge serves
as an extension to these performance analysis tools where
it consumes the logs collected by characterization tools like
Darshan and transforms them into a hierarchical structure
of clusters in order to simplify the exploration of jobs and
diagnosing of I/O bottlenecks. Unlike Splunk and the ELK
stack, Gauge does not require the user to learn a complex
query language or log handling configuration. Instead, Gauge
simplifies how a user interacts with logs by purely interacting
with the provided graphs. A major difference between Gauge,
Splunk and the ELK stack is that Gauge provide users with
the ability to explore high-dimensional data graphically, a
feature that is not found in Splunk and to achieve this feature
with the ELK stack, an additional integration is required like
using Vega, a grammar based charting library to complement
Kibana.

VI. CONCLUSION

In this work we tackle the challenge associated with di-
agnosing I/O bottlenecks in HPC jobs. We introduce Gauge,
an interactive web-based tool for exploring logged HPC jobs,
clustering these jobs into an easy-to-navigate hierarchy, and
displaying information about clusters of similar jobs. We
present a stable hierarchical method for clustering HPC jobs,
the inner workings and decisions behind the design of Gauge.
We illustrate how Gauge can be used by both facility operators
and application developers to find I/O throughput issues. We
provide access to an instance of Gauge1 that was run on ALCF
Theta supercomputer logs.

In future work, we aim to (1) support not just Darshan’s
POSIX module but also MPI-IO and STDIO, (2) integrate I/O
throughput prediction models that may help detect outlier jobs,

1Available at ascslab.org/research/gauge

and (3) work with I/O experts to improve Gauge and apply it
to other HPC systems.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research,
under Contract DE-AC02-06CH11357. This research used
resources of the Argonne Leadership Computing Facility at
Argonne National Laboratory, which is supported by the Office
of Science of the U.S. Department of Energy under contract
DE-AC02-06CH11357.

REFERENCES

[1] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross, “Understanding and improving computational science storage
access through continuous characterization,” ACM Trans. Storage, vol. 7,
no. 3, Oct. 2011.

[2] J. M. Kunkel, E. Betke, M. Bryson, P. Carns, R. Francis, W. Frings,
R. Laifer, and S. Mendez, “Tools for analyzing parallel i/o,” in Interna-
tional Conference on High Performance Computing. Springer, 2018,
pp. 49–70.

[3] M. Isakov, E. del Rosario, S. Madireddy, P. Balaprakash, P. Carns,
R. Ross, and M. Kinsy, “HPC I/O throughput bottleneck analysis with
explainable local models,” in SC’20: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2020.

[4] E. del Rosario, M. Currier, and M. Isakov, “Gauge: An Interactive
Data-Driven Visualization Tool for HPC Application I/O Performance
Analysis,” Sep. 2020. [Online]. Available: https://doi.org/10.5281/
zenodo.4027969

[5] S. Snyder, P. Carns, K. Harms, R. Ross, G. K. Lockwood, and N. J.
Wright, “Modular HPC I/O Characterization with Darshan,” in 2016
5th Workshop on Extreme-Scale Programming Tools (ESPT), 2016, pp.
9–17.

[6] M. Meilă, “Comparing clusterings by the variation of information,”
in Learning Theory and Kernel Machines, B. Schölkopf and M. K.
Warmuth, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp. 173–187.

[7] E. B. Fowlkes and C. L. Mallows, “A method for comparing two
hierarchical clusterings,” Journal of the American Statistical Association,
vol. 78, no. 383, pp. 553–569, 1983.

[8] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, pp. 603–619, 2002.

[9] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based al-
gorithm for discovering clusters in large spatial databases with noise,”
in Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, ser. KDD’96. AAAI Press, 1996, p.
226–231.

[10] D. Haziza, J. Rapin, and G. Synnaeve, “Hiplot, interactive high-
dimensionality plots,” https://github.com/facebookresearch/hiplot, 2020.

[11] “React: Javascript library for building user interfaces,” https://reactjs.
org/, 2020, accessed: 2020-09-06.

[12] M. Bostock, V. Ogievetsky, and J. Heer, “D3: Data-driven documents,”
IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2011.

[13] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth,
R. B. Irvin, K. L. Karavanic, K. Kunchithapadam, and T. Newhall, “The
paradyn parallel performance measurement tool,” Computer, vol. 28,
no. 11, pp. 37–46, 1995.

[14] M. Gerndt, K. Fürlinger, and E. Kereku, “Periscope: Advanced tech-
niques for performance analysis.” in PARCO, 2005, pp. 15–26.

[15] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach,
“Vampir: Visualization and analysis of mpi resources,” 1996.

[16] J. Stearley, S. Corwell, and K. Lord, “Bridging the gaps: Joining
information sources with splunk.” in SLAML, 2010.

[17] G. Smith, “Log analysis with the elk stack (elasticsearch, logstash and
kibana),” 2015.

ascslab.org/research/gauge
https://doi.org/10.5281/zenodo.4027969
https://doi.org/10.5281/zenodo.4027969
https://github.com/facebookresearch/hiplot
https://reactjs.org/
https://reactjs.org/


VII. REPRODUCIBILITY APPENDIX

We open-source Gauge and provide access to an
anonymized dataset of HPC jobs ran on the Argonne Leader-
ship Computing Facility (ALCF) Theta supercomputer. The
code and the data are available at [4]. Both the front and
back end are containerized using Docker, and allow easy
deployment on new systems and on new datasets. Additionally,
we provide the code to reproduce Figure 1. For support or
feature requests, please contact the authors.


	Introduction
	Clustering Methodology
	Preliminaries
	Clustering HPC jobs
	Choice of clustering method
	Hierarchical clustering of HPC data

	HPC I/O Performance Analysis Using Gauge
	Gauge Clustering Hierarchy
	Gauge Per-Cluster Visualization
	Gauge Cluster Parallel Coordinate Plots
	Gauge Software Architecture

	Case Study
	Related Work
	Conclusion
	References
	Reproducibility Appendix

