

Research Group German Climate Computing Center

$\begin{array}{l} \mbox{Semi-automatic Assessment of I/O Behavior} \\ \mbox{An Explorative Study on 10^6 Jobs} \end{array}$

SC19-PDSW November 18, 2019

Eugen Betke, Julian Kunkel

Goals: Finding jobs with

- high I/O load, but inefficient data access
 - e.g., for application optimization
- critical I/O load, that affects file system performance
 - e.g., for better job scheduling

Strategy:

- Define simple job metrics
- Use them for ranking and comparison

Analysis Workflow

1. Computing file system usage statistics

Segmentation and Scoring of Monitoring Data

 \blacktriangleright Segment size = 3 time points (in this example only)

- Categorization 2
 - Quantiles q99 and q99.9 define thresholds
- Scoring 3
 - CriticalIO is at least 4x higher than HighIO

0.1 or 4

Segment scores

 $\sum MScore$

NScore

MScore

NScore

JScore

File System Usage Statistics

Metric		Limits		Number of occurences		
Name	Unit	q99	q99.9	LowIO	HighIO	CriticalIO
md_file_create	Op/s	0.17	1.34	65,829K	622K	156K
md_file_delete	Op/s	0.00	0.41	65,824K	545K	172K
md₋mod	Op/s	0.00	0.67	65,752K	642K	146K
md_other	Op/s	20.87	79.31	65,559K	763K	212K
md_read	Op/s	371.17	7084.16	65,281K	1,028K	225K
osc_read_bytes	MiB/s	1.98	93.58	17,317K	188K	30K
osc_read_calls	Op/s	5.65	32.23	17,215K	287K	33K
osc_write_bytes	MiB/s	8.17	64.64	16,935K	159K	26K
osc_write_calls	Op/s	2.77	17.37	16,926K	167K	27K
read_bytes	MiB/s	28.69	276.09	66,661K	865K	233K
read_calls	Op/s	348.91	1573.45	67,014K	360K	385K
write_bytes	MiB/s	9.84	80.10	61,938K	619K	155K
write_calls	Op/s	198.56	6149.64	61,860K	662K	174K

Metrics

Metrics

$$Job-IO-Balance (B) = mean \left(\left\{ \frac{mean_score (j)}{max_score (j)} \right\}_{j \in IOJS} \right)$$

$$Job-IO-Utilization (U) = \sum_{FS} \frac{\sum_{j \in IOJS} max_score(j)}{N}$$

$$Job-IO-Problem-Time (PT) = \frac{count (IOJS)}{count (JS)}$$

$$IOJS: IO-intensive job segments$$

Example

 $\label{eq:Job-IO-Balance} \begin{array}{l} \mbox{Job-IO-Balance} = 0,625\\ \mbox{Job-IO-Utilization} = 2.5\\ \mbox{IO-Job-Problem-Time} \approx 0.33 \end{array}$

Jobs with high I/O-Intensity

$\mathsf{Job}\text{-}\mathsf{IO}\text{-}\mathsf{Intensity} = \mathsf{B} \cdot \mathsf{PT} \cdot \mathsf{U} \cdot \mathsf{total_nodes}$

30 jobs ordered by IO-Intensity

Summary

Applied methods

- **Segmentation**: Preserves time line information
- **Categorization**: Filters not significant I/O and make incompatible metrics compatible
- Scoring: Allows mathematical computation
- Job-IO-Problem-Time, Job-IO-Balance and Job-IO-Utilization
 - > Are basic and **simple** metrics
- IO-Intensity and IO-Problem-Score
 - > Are a kind of queries, used for job ranking