
I/O Characteristics of Scientific Applications

Chen Wang1, Adam Moody2, Elsa Gonsiorowski2, Kathryn Mohror2, Marc Snir1

1. University of Illinois at Urbana-Champaign
2. Lawrence Livermore National Laboratory

• To what extend can we relax POSIX semantics to improve I/O
performance without breaking applications?
• What function calls (API) are needed to implement a file system?
• Do different processes read or write to the same part of a file?
• Do any applications actually write to the same bytes in a file twice?
• Do processes change files after they close the file? Or are the file

contents permanent after closing the file?

Some interesting questions

Recorder - a lightweight tracing library
• Able to trace HDF5, MPI-I/O, and POSIX I/O

• Captures all arguments with compressed
encoding
• Many analyses and visualization tasks and

can be done without decompression

• Detailed visualization report
• Function counts and function set
• Access patterns of each rank
• I/O granularities

Traces from 22/25 applications

Some observations
• Rarely read back once written or closed.

• Many overlapping reads, almost no overlapping writes.

• Many attributes, e.g., last access time, last modification time,
and last change time, are never used by applications directly.

• Most files are read-only or write-only.

• Many metadata related functions are called behind the scene.

• Collect traces for different configurations, e.g., different problem sizes,
with/without OpenMP, with MPI-hints, etc.) and on larger scales.
• What is the minimum POSIX semantics requirements for applications?
• How much do reads skip around files?
• What is the read cache paging effectiveness for a given cache/page size?

More work to be done

