I/O Characteristics of Scientific Applications

Chen Wang¹, Adam Moody², Elsa Gonsiorowski², Kathryn Mohror², Marc Snir¹

- 1. University of Illinois at Urbana-Champaign
- 2. Lawrence Livermore National Laboratory

Some interesting questions

- To what extend can we relax POSIX semantics to improve I/O performance without breaking applications?
- What function calls (API) are needed to implement a file system?
- Do different processes read or write to the same part of a file?
- Do any applications actually write to the same bytes in a file twice?
- Do processes change files after they close the file? Or are the file contents permanent after closing the file?

Recorder - a lightweight tracing library

- Able to trace HDF5, MPI-I/O, and POSIX I/O
- Captures all arguments with compressed encoding
 - Many analyses and visualization tasks and can be done without decompression
- Detailed visualization report
 - Function counts and function set
 - Access patterns of each rank
 - I/O granularities

POSIN

Traces from 22/25 applications

ſ	#	App	Version	Description
ſ	1	Flash [2]	4.4	
ſ	2	Nek5000	v19.0-rc1	High-order solver for computational fluid dynamics.
	3	IOR	3.3.0+dev	Parallel filesystem I/O benchmark.
ſ	4	QMCPACK [10]	3.7.0	Electronic structure code that implements numerous Quantum Monte Carlo (QMC) algorithms.
ſ	5	VASP	5.4.4	Vienna Ab initio Simulation Package for atomic scale materials modelling.
6		LULESH [9]	2.0	Livermore unstructured Lagrangian explicit shock hydrodynamics.
7		ENZO	2.5	AMR simulation code for rich, multi-physics hydrodynamic astrophysical calculations.
8		LBANN [14]	1.0.0	Livermore big artificial neural network toolkit.
		ExaWind:		
9		- Nalu-Wind [6]	1.0	Wind energy focused variant of Nalu.
	10	- OpenFast [1]	1.0.0	Open-source wind turbine simulation tool that was established with the FAST v8.
	11	HACC-IO	1.0 beta	Hardware accelerated cosmology code simulation.
	12	NWChem [13]	6.8.1	Open source high-performance computational chemistry.
ſ	13	ParaDis	2.5.1.1	Large scale dislocation dynamics simulation code to study the fundamental mechanisms of plasticity.
ſ	14	Keras [5]	2.2.4	A high-level neural networks API, written in Python.
15		Chombo [3]	3.2	Software for adaptive solutions of partial differential equations.
ſ	16	GTC [11]	0.92	Parallel, particle-in-cell code for turbulence simulation.
17		GAMESS [8]	0.92	General atomic and molecular electronic structure system.
18		Adcirc	53.04	A system for solving time dependent, free surface circulation and transport problems.
19		E3SM/CESM		
ſ		Exaalt:		
	20	- LAMMPS [12]	12Dec 18	Large-scale molecular dynamics code with a focus on materials modeling.
	21	- LATTE [4]	1.2.1	Open source density functional tight binding molecular dynamics.
ſ	21	GTC-P		
ſ	22	MILC QCD	7.7.11	MILC collaboration code for lattice QCD calculations.
23		MSAProbs [7]	1.0.5	Parallel and accurate multiple sequence alignment.
24		mpiBLAST		Parallel implementation of NCBI BLAST
25		HavoqGT	0.1	HavoqGT is a framework for expressing asynchronous vertex-centric graph algorithms.
_		-		

Some observations

- Rarely read back once written or closed.
- Many overlapping reads, almost no overlapping writes.
- Many attributes, e.g., last access time, last modification time, and last change time, are never used by applications directly.
- Most files are read-only or write-only.
- Many metadata related functions are called behind the scene.

App	R/W only	R→R	$W \rightarrow W$	$R \rightarrow W$	$W \rightarrow R$
Flash	\checkmark	×	Х	×	Х
Nek5000	\checkmark	S;M	×	×	Х
LAMMPS	\checkmark	Х	Х	Х	Х
VASP	\checkmark	S;M	S	×	Х
QMCPack	\checkmark	М	S;M	Х	Х
ENZO	×	×	Х	S	Х
LBANN	\checkmark	М	×	×	Х

Func	FLASH	Nek5000	LAMMPS	QMCPACK	ENZO	VASP	LBANN
lstat	\checkmark			\checkmark	\checkmark		
lstat64	\checkmark						
stat	\checkmark				\checkmark		
stat64		\checkmark		\checkmark		\checkmark	
fstat	\checkmark			\checkmark	\checkmark		
fstat64		\checkmark				\checkmark	
getcwd	\checkmark			\checkmark	\checkmark	\checkmark	
access	\checkmark				\checkmark		
faccessat							\checkmark
umask	\checkmark		\checkmark	\checkmark			
fileno		\checkmark		\checkmark		\checkmark	\checkmark
readlink				\checkmark		\checkmark	
unlink						\checkmark	\checkmark
mkdir		\checkmark			\checkmark		
readdir							\checkmark
closedir							\checkmark

Percentage of Contiguous Calls vs Non-Contiguous Calls

■ Contiguous ■ Non-Contiguous

More work to be done

- Collect traces for different configurations, e.g., different problem sizes, with/without OpenMP, with MPI-hints, etc.) and on larger scales.
- What is the minimum POSIX semantics requirements for applications?
- How much do reads skip around files?
- What is the read cache paging effectiveness for a given cache/page size?