
Mitigating the Impact of Tail Latency of Storage Systems on
Scalable Deep Learning Applications

Hiroki Ohtsuji, Erika Hayashi, Naoto Fukumoto, Eiji Yoshida
Fujitsu Laboratories Ltd.

Kawasaki, Japan

Takuya Okamoto
Fujitsu Ltd.

Kawasaki, Japan

Takeru Kuramoto, Osamu Tatebe
University of Tsukuba

Tsukuba, Japan

I. INTRODUCTION

Massive scale deep learning enables HPC systems to finish the
training of the large-scale data sets (e.g. ImageNet) in several tens of
seconds [1]. Therefore, even a small tail latency of a storage system
relatively impacts the total training time. Most of the distributed
deep learning applications adopt the data parallel approach, which
runs multiple training processes for the different data set on different
compute nodes. For each iteration of a training process, all processes
exchange values with other processes with all-reduce operations in
a synchronous manner. This type of data parallel distributed deep
learning application is sensitive to delayed I/O operations. In most
cases, training data sets are stored in shared parallel file systems,
which usually have tail latency problems. Replacing the only a few
fractions of training data set does not have major impacts so that we
are developing a method to eliminate the effect of the I/O tail latency
by discarding the delayed I/O requests.

II. I/O LATENCY SENSITIVENESS

Fig. 1 depicts the architecture of the target system. Each computing
node obtains training data sets from a shared storage system and
synchronizes the training model with all-reduce operations in each
iteration. If even a single training process is delayed, it blocks the
whole progress of the training. Due to this characteristic, synchronous
data parallel deep learning applications are sensitive to the I/O tail
latency.

III. AVOIDING THE EFFECT OF THE TAIL LATENCY

If the replacement of the training data sets has a minor effect to
the precision of the trained model, we can replace the training data
sets when the training process is waiting for the I/O request. We are
working on the new I/O implementation that monitors I/O requests of
deep learning processes and skips the delayed I/O requests. Then, the
system gives the alternative training data sets to the training process.
We can avoid the effect of the tail latency of the storage system by
using this procedure.

Shared storage

Node #0

Training data

data

I/O Request

Node #1

Training data

data

I/O Request

Node #N-1

Training data

data

I/O Request

�

Training 

data

Weight

�w

0

Weight

�w

1

Weight

�w

N-1

All

Reduce

Fig. 1: A functional diagram of a distributed deep learning system

Fig. 2: The histogram depicts the read latency distribution of the
shared storage system. X-axis corresponds to the measured latency.

IV. PRELIMINARY EVALUATION

A. Distribution of I/O latency of a shared storage system

Fig. 2 depicts the latency distribution of a shared storage system
when the application loads the ImageNet data set. The result was mea-
sured on Cygnus supercomputer at Univ. of Tsukuba. We observed
several delayed (more than 1 sec.) read operations, which occupy
less than 0.01 percentage. If we can discard those I/O requests, the
longest latency will be shortened by 65 %.

B. Effect of replacing the training data sets

As described in the previous section, if 0.01 % of the training data
set can be discarded, we can mitigate the impact of the tail latency of
the storage system. [2] proposes a shuffling method for deep learning
applications. According to their result, replacing less than 0.01 % of
the training data sets does not cause significant precision degradation.

V. CONCLUSION AND FUTURE WORK

Our preliminary evaluation showed that there is an inevitable long
tail latency issue and our strategy to replace training data sets when
I/O requests stuck on delayed response can cover the effect of the
tail latency issue. Future work is implementing the proposed method
as a complete set of a deep learning framework and evaluating the
actual precision of the trained model and measuring the entire benefit
of the method.

REFERENCES

[1] Masafumi Yamazaki et al. Yet Another Accelerated SGD: ResNet-50
Training on ImageNet in 74.7 seconds. CoRR, abs/1903.12650, 2019.

[2] Y. Zhu et al. Entropy-Aware I/O Pipelining for Large-Scale Deep Learning
on HPC Systems. In 2018 IEEE 26th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), pages 145–156, Sep. 2018.


