
I/O Characteristics of Scientific Applications
Chen Wang1

chenw5@illinois.edu
Adam Moody2

moody20@llnl.gov
Elsa Gonsiorowski2

gonsie@llnl.gov
Kathryn Mohror2
kathryn@llnl.gov

Marc Snir1
snir@illinois.edu

I. MOTIVATION

Our goal is to analyze and understand the I/O characteristics
of HPC applications in order to to identify opportunities for
improving application I/O performance. For example, can we
relax POSIX semantics to make I/O faster and still meet
an application’s requirements? What functions or attributes
(e.g., access time, modification time) do applications actually
use and need? Can we omit support for some functions and
attributes in favor of performance when building a file system?

II. METHOD

In this preliminary study, we generated I/O traces from
25 real-world, scientific applications with Recorder [1], a
multilevel tracing tool that generates detailed I/O information
from application executions. We extended Recorder in three
ways: we added support for a wider range of I/O function calls,
we designed and implemented a compressed encoding schema
that significantly reduces log file sizes by exploiting the
redundancy of intra-process I/O operations, and we developed
a visualization tool that generates a detailed I/O report for
an application. For example, Figure 1 shows the file offsets
accessed by each rank for the Flash application.

We highlight some of our early observations here:
• Application access patterns are mostly read-only or write-

only (first column in Table I). Based on this, strict
POSIX consistency may not be necessary. In parallel file
systems, file accesses are normally protected with global
locks that can cause performance penalties. The question
that remains is: to what extent can we relax the POSIX
semantics without breaking the applications?

• Most files are never read back once written or closed. In
Table I, R→R, R→W, W→W and W→R indicate read-
after-read, write-after-read, write-after-write and read-
after-write on the same file offsets. Our results show
that applications read the same file offsets repeatedly.
However, few or no applications ever perform writes after
reads or reads after writes, which suggest we can discard
the data in file system buffers once written.

• Most applications have contiguous read/write patterns
(Figure 2). Applications can benefit from read-ahead
caches but need to set the cache block size accordingly.

• Many attributes, e.g., last access time, last modification
time), and last change time, are never used by applications
directly. However, faithfully implementing them imposes

1University of Illinois at Urbana-Champaign
2Lawrence Livermore National Laboratory

non-trivial overheads due to frequent metadata operations.
Thus, it might be reasonable to ignore some of those
attributes when building a file system.

Currently all applications in our study were run on a
small scale with default configurations. In our future work,
we will test with more configurations, e.g., with different
problem sizes and MPI hints, and at larger scales. We still
have many questions to answer to complete our study. For
example, what is the minimum POSIX semantics requirement
for applications? How much do reads skip around files? What
is the read cache/paging effectiveness for a given cache/page
size?

App R/W only R→R W→W R→W W→R
Flash X × × × ×
Nek5000 X S;M × × ×
LAMMPS X × × × ×
VASP X S;M S × ×
QMCPack X M S;M × ×
ENZO × × × S ×
LBANN X M × × ×

TABLE I. I/O PATTERNS

Fig. 1. Flash - Offset vs Rank

Fig. 2. Percentage of contiguous I/O operations in different applications

REFERENCES

[1] Recorder. [Online]. Available: https://github.com/uiuc-hpc/Recorder


