
SADedupe: Skew-Aware Inline Deduplication for
Distributed Storage

Binqi Zhang∗, Bing Bing Zhou∗, Chen Wang†, Dong Yuan∗, Albert Y. Zomaya∗
∗The University of Sydney, Sydney, Australia

†CSIRO, Sydney, Australia
bzha4858@it.usyd.edu.au, {bing.zhou, dong.yuan, albert.zomaya}@sydney.edu.au, chen.wang@csiro.au

Data deduplication has been applied to modern storage
systems to improve storage efficiency. Deduplication means
to identify and store data only once. Usually, hash functions
with low risk of collision such as SHA-1 or MD5 are applied
to data blocks to get hash values which represent the contents.
Then, the hash values of data blocks are compared. The system
assumes two data blocks are identical if their hash values are
the same. We call the hash value the “fingerprint” of the data
block. Therefore, a fingerprint index is required. When new
data arrives, its fingerprint is checked against the index. If there
is a match found, the new data is identified as a duplicate and
not stored. Initially, systems are equipped with limited memory
so the index is stored on disk. This results in the well-known
Disk Bottleneck [1] problem as every search results in a disk
access. In recent years, systems have started to load the index
in main memory. However, the fingerprint index is often too
big to fit in memory of a single node.

To achieve higher IO throughput and lower overheads, a
two-layer deduplication architecture has been proposed. We
design the system on top of the Hadoop Distributed File
System (HDFS) [2]. The name node routes the data chunks
(MB in size) that are likely to share identical data blocks
(KB in size) to the same node by extracting feature ID from
minimal hash values according to Broder’s Theorem [3]. Then,
the deduplication is performed at each node. There are several
advantages. First, this adds minimal changes to the distributed
file system by only changing the routing algorithm as the
chunk size and file recipe meta data can remain unchanged.
Second, the deduplication is executed by each node so the file
system regards a chunk’s writing as complete once it arrives
at the node. The process of deduplication can be invisible to
the file system. Last but not least, the fingerprint index on
each node is much smaller than a global one and can often fit
directly into the physical memory. By leveraging the work of
CAFTL [4], no fingerprint index is even required on the host
of data nodes as the deduplication is performed in the disk.

However, we found one potential problem in this approach:
routing chunks with similar contents to the same node may
incur load imbalance issues. As time goes on, some nodes
become extremely hot. The problem with load imbalance is
twofold: First, it may cause significant imbalance in logical
storage usage. Second, after deduplication, similar data chunks
only have one instance stored on the node. The stored data
chunks can have many references. For some popular contents,

the reference number can be huge. When the files are read
simultaneously, all read requests go to the same referenced
chunk, therefore to the same node. The queue on that node can
potentially be longer than usual. The overall IO performance
can be impeded. Furthermore, this increases the risk of data
loss and is a real challenge for fault tolerance. The data loss
risk may be easily mitigated by the replication strategy in
the file system but the hotness does not go away by simply
replicating data. Prior work [5] has paid attention to the first
problem which is relatively easier to solve. This work focuses
on the second problem, which is often ignored but may lead
to performance degradation.

In this work, we carefully analyze the potential impact of
data skew in our deduplication system and propose SADedupe
as it is aware of the data skew problem and mitigates the
impact by trading off a marginal deduplication ratio. It is
complementary to the existing file system protocol and can
easily be configured. We integrate the reference count of the
feature ID (representative hash value) for all chunks into the
routing scheme. When the reference count is bigger than a
configurable threshold, the upcoming instances with the same
feature ID are no longer routed to the original node but to
the next one by a modular function. We select the feature
ID instead of all hash values of all smaller blocks because
the cost of maintaining all hash values becomes impractical
for this system. Also, the feature ID is a good representation
of the similarity of the entire chunk. Our results show that by
capping the reference count and relocating chunks with higher
reference counts to more nodes, the storage usage increases
by less than 2%. The deviation of both physical and logical
storage usage comes down by approximately 15%.

REFERENCES

[1] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk bottleneck in the
data domain deduplication file system,” in Fast, vol. 8, 2008, pp. 1–14.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on. IEEE, 2010, pp. 1–10.

[3] A. Z. Broder, “On the resemblance and containment of documents,” in
Compression and Complexity of Sequences 1997. Proceedings. IEEE,
1997, pp. 21–29.

[4] F. Chen, T. Luo, and X. Zhang, “CAFTL: A content-aware flash trans-
lation layer enhancing the lifespan of flash memory based solid state
drives,” in FAST, vol. 11, 2011.

[5] W. Dong, F. Douglis, K. Li, R. H. Patterson, S. Reddy, and P. Shilane,
“Tradeoffs in scalable data routing for deduplication clusters,” in FAST,
vol. 11, 2011, pp. 15–29.


