
BBAlloc: Towards Allocation based Management of
Burst Buffer Systems

Sagar Thapaliya and Purushotham Bangalore
University of Alabama at Birmingham

Birmingham, AL, USA
Email: {sagar, puri}@uab.edu

Jay Lofstead
Sandia National Laboratories

Albuquerque, NM, USA
Email: gflofst@sandia.gov

Kathryn Mohror and Adam Moody
Lawrence Livermore National Laboratory

Livermore, CA, USA
Email: {kathryn, moody20}@llnl.gov

I. INTRODUCTION

In this work, we consider the problem of managing a Burst
Buffer (BB) system in a shared environment. A BB system
is a new storage technology for HPC architectures, that acts
as an intermediate layer between performance-hungry HPC
applications and the slow parallel file system [2]. It uses a
tier of storage system, typically architected using non-volatile
memory (NVM) such as flash-based SSDs. HPC systems
equipped with BB will be available in the near future [1]. So,
it is important to provide software infrastructure to manage
resources and I/O traffic in BB, in order to support use cases
such as checkpoint/restart and data staging.

In some recent works, researchers have presented and eval-
uated software systems to provide I/O access to BB systems
and to conduct data management [3], [4]. However, they do
not look at issues in shared BB systems for support of multiple
jobs. Sharing can result in problems such as contention and
load imbalance across BB nodes. Another issue that arises
is: whether we should treat BB as a space resource such
as memory or as a bandwidth resource such as parallel file
system, or as something completely different.

We explore BB management as a resource allocation prob-
lem, with the goal of providing BB resources to applications,
balancing the trade-offs between meeting application needs
and whole system optimization. We first investigate impli-
cations of various allocation techniques including allocation
based on space and efficiency requirements of applications and
sharing with space- and time-sharing. We use analytic models,
simulation, and empirical measurement to conduct this inves-
tigative study. Then we identify management requirements
for BB resource allocation and present our BB allocation
framework called BBAlloc, to capture those requirements.

II. BB RESOURCE ALLOCATION PROBLEM

In this work, we focus on a particular architecture of a BB
system based on the Trinity cluster [1], where the BB acts as a
secondary storage system located on a set of dedicated nodes,
and uses the same network as the compute nodes. When
using such a BB system, jobs may have different requirement
in terms of BB space and bandwidth. They need enough space
to match with their output data size and bandwidth to meet
their performance goals.

During our evaluation, we found that under our target BB
system, it is important to consider both space and bandwidth
requirement while allocating the number of BB nodes to a

given job. In addition, we also found that it is not practical to
allocate a subset of BB nodes to individual jobs for dedicated
access, because of the small ratio of BB nodes to compute
nodes. Instead, there will be need for sharing BB nodes across
multiple jobs. In such shared system, applications can face
I/O interference during concurrent access. We verified this
behavior with empirical measurements on a test bed machine.
We observed that the I/O bandwidth of a BB node gets divided
across concurrent I/O processes. Another issue is wear levels
of SSDs: SSDs can support only limited write cycles and it
wears out after that. Therefore it is also important to balance
SSD wear levels across BB nodes.

We argue that it is important to proactively manage alloca-
tion of BB resources to applications, and control these issues
during the allocation.

III. BBALLOC FRAMEWORK

Based on the above observations, we have begun to develop
a framework called BBAlloc to manage allocation of space and
bandwidth of a shared BB system. Under BBAlloc, we plan to
manage BB resource allocation using multiple steps, including
allocation of storage space, dividing the space into multiple
partitions, and placement of these partitions on physical BB
nodes. During placement, our goal is to balance multiple
performance trade-offs across BB nodes, such as concurrent
I/O traffic, SSD wear level and free space availability. In this
talk, we will discuss the motivating issues for BBAlloc and
also outline its design.

REFERENCES

[1] Trinity-Overview. http://www.lanl.gov/projects/trinity/ assets/docs/
trinity-overview-for-web.pdf. [Online; accessed 7-Sept-2015].

[2] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, and
C. Maltzahn. On the Role of Burst Buffers in Leadership-Class Storage
Systems. In Mass Storage Systems and Technologies (MSST), 2012 IEEE
28th Symposium on, pages 1–11, 2012.

[3] K. Sato, K. Mohror, A. Moody, T. Gamblin, B. R. Supinski, S. Maruyama,
and S. Matsuoka. A User-Level InfiniBand-Based File System and Check-
point Strategy for Burst Buffers. In 2014 14th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, Chicago, IL, USA,
May 26-29, 2014, pages 21–30, 2014.

[4] T. Wang, S. Oral, Yandong Wang, B. Settlemyer, S. Atchley, and
Weikuan Yu. Burstmem: A high-performance burst buffer system for
scientific applications. In Big Data (Big Data), 2014 IEEE International
Conference on, pages 71–79, Oct 2014.

This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 (LLNL-CONF-677247). It is also supported in part by the National
Science Foundation under Grant No. 12292820. Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

http://www.lanl.gov/projects/trinity/_assets/docs/trinity-overview-for-web.pdf
http://www.lanl.gov/projects/trinity/_assets/docs/trinity-overview-for-web.pdf

	Introduction
	BB Resource Allocation Problem
	BBAlloc Framework
	References

