
Rapid Replication of Multi-Petabyte File Systems

Justin Sybrandt
Grove City College, NERSC
SybrandtJG1@gcc.edu

Jason Hick
NERSC

JHick@lbl.gov

ABSTRACT
As file systems grow larger, tools which were once industry
standard become unsustainable at scale. Today, large data
sets containing hundreds of millions of files often take longer
to traverse than to copy. The time needed to replicate a file
system has grown from hours to weeks, an unrealistic wait
for a backup. Distsync is our new utility that can quickly
update an out-of-date file system replica. By utilizing Gen-
eral Parallel File System (GPFS) policy scans, distsync finds
changed files without navigating between directories. It can
then parallelize work across multiple nodes, maximizing the
performance of a GPFS. The National Energy Research Sci-
entific Computing Center (NERSC) is currently using dist-
sync to replicate file systems of over 100 million inodes and
over four petabytes.

1. MOTIVATION
NERSC is moving to a new facility, and will need to trans-

fer its data to the new location. A novel method is needed
to quickly ensure that the new file systems contain accurate
and up-to-date information.

Data centers have a similar problem when performing rou-
tine backups or restoring data from a backup. In all of these
cases there are two sets of files, a fresh copy and a stale copy,
wherein the stale copy needs to be freshened as quickly as
possible.

2. RELATED WORK
Two linux default tools are often used to perform file repli-

cations, cp [1] and rsync [2]. Additionally, data centers have
begun to use mcp [3], which can move files in parallel, and
shift [4], which can leverage whole clusters. By using more
system resources, these tools can duplicate individual large
files much faster than their single-core counterparts.

Unfortunately, none of these tools were designed to syn-
chronize two large file systems containing similar files. NERSC
previously used shift along with rsync to perform multi-
petabyte backups; a process which often spanned days as
shift and rsync each processed every file in both the fresh
and stale copies.

3. ARCHITECTURE
Our new design creates and compares two lists of file at-

tributes, one for the fresh and stale file system. The dif-
ferences between these scans are cataloged in various job
files, each representing different types of changes between
the fresh and stale dates. These jobs are then distributed to

a set of machines so that changes from the fresh system can
be propagated in parallel. These tasks take place in three
modules, the Job Generator, the Manager, and the Worker.

The Job Generator takes advantage of the GPFS [5] policy
scan feature to quickly query the file system’s metadata.
This produces two sorted, plain-text lists of file attributes,
one each for the fresh and stale systems. Then, the job
generator compares those lists to determine the changes that
have occurred since the stale copy was made. The paths
of changed files are recorded in job files; each has a type
representing the change that occurred in each of its files.

The Distsync Manager uses job files to create a schedule,
ensuring that files are never added before their parent di-
rectories are created, and that directories are never removed
before their containing files are removed. The Manager also
spawns the Distsync Worker on a set of provided machines.
Lastly, the Manager begins communicating with the Work-
ers, assigning jobs and recording each machine’s status.

The Distsync Worker, after receiving a job file from the
manager, uses system commands to perform each task. For
example, if receiving a job containing modified files, a worker
will launch multiple parallel instances of rsync in order to
propagate any changes from the fresh to the stale file system.

4. PRELIMINARY RESULTS
Preliminary results show that Distsync outperforms the

hand-scripted method, and scales in regard to the number
of changes, instead of the total file system size. This means
that the more frequently a system is backed up, the less time
each backup takes. For example, in one test the initial repli-
cation of a 350 TB system took over forty hours to complete.
A backup three days later only took three hours.

5. REFERENCES
[1] “cp(1) linux user’s manual.”

[2] “rsync(1) linux user’s manual.”

[3] P. Z. Kolano and R. B. Ciotti, “High performance
multi-node file copies and checksums for clustered file
systems,” in Proc. of the 24th USENIX Large
Installation System Administration Conf.

[4] P. Z. Kolano, “High performance reliable file transfers
using automatic many-to-many parallelization,” in 5th
Wkshp. on Resiliency in High Performance Computing.

[5] F. Schmuck and R. Haskin, “Gpfs: A shared-disk file
system for large computing clusters,” in FAST ’02
Proceedings of the 1st USENIX Conference on File and
Storage Technologies (editor, ed.), no. 19, USENIX
Association Berkeley, CA, USA.


