
LA-UR-15-27431

MarFS: A Scalable Near-POSIX File System
over Cloud Objects

Kyle E. Lamb
HPC Storage Team Lead

Nov 18th 2015

Why Do We Need a MarFS

• If the Burst Buffer does its job very well (and indications
are capacity of in system NV will grow radically) and
campaign storage works out well (leveraging cloud), do
we need a parallel file system anymore, or an archive?

• Maybe just a bw/iops tier and a capacity tier.
• Too soon to say, seems feasible longer term

Memory

Burst Buffer

Parallel File
System (PFS)

Campaign
Storage

Archive

Memory

IOPS/BW Tier

Parallel File
System (PFS)

Capacity Tier

Archive

Factoids
LANL HPSS = 53 PB and 543 M
files
Trinity 2 PB memory, 4 PB flash
(11% of HPSS) and 80 PB PFS or
150% HPSS)
Crossroads may have 5-10 PB
memory, 40 PB solid state or
100% of HPSS with data
residency measured in days or
weeks

Memory

Parallel File
System

Archive

HPC Pre Trinity

HPSS Parallel
Tape

Lustre
Parallel File
System

DRAM
1-2 PB/sec
Residence – hours
Overwritten – continuous

4-6 TB/sec
Residence – hours
Overwritten – hours

1-2 TB/sec
Residence – days/weeks
Flushed – weeks

100-300 GB/sec
Residence – months-years
Flushed – months-years

10s GB/sec (parallel tape
Residence – forever

HPC Post Trinity HPC At Trinity

How about a Scalable Near-POSIX File
System over Object Erasure?

• Best of both worlds
– Objects Systems

• Provide massive scaling and efficient erasure
• Friendly to applications, not to people. People need a name space.
• Huge Economic appeal (erasure enables use of inexpensive storage)

– POSIX name space is powerful but has issues scaling
• The challenges

– Mismatch of POSIX an Object metadata, security, read/write semantics, efficient
object/file sizes and no update in place with Objects

– How do we
• scale POSIX name space to trillions of files/directories
• leverage massive Object Scalability for “Capacity Tier) with 100X BW of HSM’s but 1/10 BW of PFS
• with many years of data protection longevity?

• Looked at
– GPFS, Lustre, Panasas, OrangeFS, Cleversafe/Scality/EMC ViPR/Ceph/Swift, Glusterfs,

General Atomics Nirvana/Storage Resource Broker/IRODS, Maginatics, Camlistore,
Bridgestore, Avere, HDFS

Object Repo X

MarFS Scaling (Metadata and Data)
MarFS

ProjectA Dir

DirA

DirA.A

DirA.A.
A

DirA.A.A.A

DirB

DirA.A.B

FA

FF

FB

FD FC

FE

FI FH FG

ProjectN Dir

DirA

DirA.A

DirA.A.A

DirA.A.A.A

DirB

DirA.A.B

FA

FF

FB

FD FC

FE

FI FH FG

Namespace
Project A

Namespace
Project N

N

N
a
m
e
S
p
a
c
e
s PFS

MDS
A

PFS
MDS

N

PFS
MDS
A.1

PFS
MDS
A.2

PFS
MDS
A.M

PFS
MDS
N.1

PFS
MDS
N.2

PFS
MDS
N.M

Uni Object

File
Packed

Object File
Multi

Object File Object Repo A

N X M MDS File Systems
(for metadata only)

Namespaces
MDS holds
Directory
Metadata

File Metadata is hashed
over M multiple MDS

Striping across 1 to X Object Repos

File Name Hash File Name Hash

MarFS Internals Overview

/GPFS-MarFS-md1 /GPFS-MarFS-mdN

Dir1.1

UniFile - Attrs: uid, gid, mode, size, dates, etc.
Xattrs - objid repo=1, id=Obj001, objoffs=0, chunksize=256M, Objtype=Uni, NumObj=1, etc.

trashdir

/MarFS top level namespace aggregation

M
e
t
a
d
a
t
a

D
a
t
a

Object System 1

Object System X

Dir2.1

Obj001

Users do data
movement here

Metadata Servers

Simple MarFS Deployment

GPFS
Server
(NSD)

Dual Copy
Raided Fast Stg

GPFS
Server
(NSD)

Obj
md/d

ata
server

Obj
md/d

ata
server

Batch FTA
Have your enterprise file

systems and MarFS
mounted

Interactive FTA
Have your

enterprise file
systems and

MarFS mounted

Batch FTA
Have your enterprise file

systems and MarFS
mounted

Separate interactive and
batch FTAs due to object

security and performance
reasons. Data Repos

Dual Copy

Raided Fast Stg

Scale

Scale
Scale

Open Source, BSD License
Partners Welcome

https://github.com/mar-file-system/marfs
https://github.com/pftool/pftool)

Thank You For Your Attention

BOF: Two Tiers Scalable Storage: Building POSIX-Like Namespaces with Object Stores
Date: Nov 18th, 2015
Time: 5:30PM - 7:00PM
Ron: Hilton Salon A
Session leaders : Sorin Faibish, Gary A. Grider, John Bent

https://github.com/mar-file-system/marfs
https://github.com/pftool/pftool

Backup

Won’t someone else do it?
• There is evidence others see the need but no magic bullets yet: (partial list)

– Cleversafe/Scality/EMC ViPR/Ceph/Swift etc. are moving towards multi-personality data
lakes over erasure coded objects, all are young and assume update in place for posix

– Glusterfs is probably the closes thing to MarFS. Gluster is aimed more for the enterprise
and midrange HPC and less for extreme HPC. It also is making the trade off space for
update in place which we can live without. Glusterfs is a way to unify file and object
systems, MarFS is another, each coming at it from a different stance in trade space

– General Atomics Nirvana, Storage Resource Broker/IRODS is optimized for WAN and
HSM metadata rates. There are some capabilities for putting POSIX files over objects,
but these methods are largely via NFS or other methods that try to mimic full file system
semantics including update in place. These methods are not designed for massive
parallelism in a single file, etc.

– Maginatics from EMC but it is in its infancy and isnt a full solution to our problem yet.
– Camlistore appears to be targeted and personal storage.
– Bridgestore is a POSIX name space over objects but they put their metadata in a flat

space so rename of a directory is painful.
– Avere over objects is focused at NFS so N to 1 is a non starter.
– HPSS or SamQFS or a classic HSM? The metadata rates design target way too low.
– HDFS metadata doesn’t scale well.

MarFS Requirements
• Linux system(s) with C/C++ and FUSE support
• MPI for parallel comms in Pftool (a parallel data transfer tool)

– MPI library can use many comm methods like TCP/IP, Infiniband
OFED, etc.

• Support lazy data and metadata quotas per user per name
space

• Wide parallelism for data and metadata
• Try hard not to walk trees for management (use inode scans etc.)
• Use trash mechanism for user recovery
• If use MarFS to combine multiple POSIX file systems into one

mount point, any set of POSIX file systems can be used.
• Multi-node parallelism MD FS’s must be globally visible somehow
• Using object store data repo, object store needs globally visible.
• The MarFS MD FS’s must be capable of POSIX xattr and sparse

– don’t have to use GPFS, we use due to ILM inode scan features

What is MarFS?
• Near-POSIX global scalable name space over many POSIX and non POSIX

data repositories (Scalable object systems - CDMI, S3, etc.)
• It scales name space by sewing together multiple POSIX file systems

both as parts of the tree and as parts of a single directory allowing
scaling across the tree and within a single directory

• It is small amount of code (C/C++/Scripts)
– A small Linux Fuse
– A pretty small parallel batch copy/sync/compare/ utility
– A set of other small parallel batch utilities for management
– A moderate sized library both FUSE and the batch utilities call

• Data movement scales just like many scalable object systems
• Metadata scales like NxM POSIX name spaces both across the tree and

within a single directory
• It is friendly to object systems by

– Spreading very large files across many objects
– Packing many small files into one large data object

What are all these storage layers?
Why do we need all these storage layers?

• Why
– BB: Economics (disk

bw/iops too
expensive)

Memory

Burst Buffer

Parallel File System

Campaign Storage

Archive

Memory

Parallel File System

Archive

HPC Before Trinity

HPC After Trinity
1-2 PB/sec
Residence – hours
Overwritten – continuous

4-6 TB/sec
Residence – hours
Overwritten – hours

1-2 TB/sec
Residence – days/weeks
Flushed – weeks

100-300 GB/sec
Residence – months-year
Flushed – months-year

10s GB/sec (parallel tape
Residence – forever

HPSS Parallel
Tape

Lustre
Parallel File
System

DRAM

 Campaign: Economics (PFS Raid too expensive,
PFS solution too rich in function, PFS metadata
not scalable enough, PFS designed for scratch
use not years residency, Archive BW too
expensive/difficult, Archive metadata too slow)

What it is not!
• Doesn’t allow update file in place for object data

repo’s (no seeking around and writing – it isnt a
parallel file system)

• FUSE
– Does not check for or protect against multiple writers

into the same file (when writing into object repos), use
batch copy utility or library to do this efficiently)

– Fuse is targeted at interactive use
– Writing to object backed files works but FUSE will not

create data objects that are packed as optimized as
the parallel copy utility.

– Batch utilities to reshape data written by fuse

MarFS Internals Overview Multi-File

/GPFS-MarFS-md1 /GPFS-MarFS-mdN

Dir1.1

MultiFile - Attrs: uid, gid, mode, size, dates, etc.
Xattrs - objid repo=1, id=Obj002., objoffs=0, chunksize=256M, ObjType=Multi, NumObj=2, etc.

trashdir

/MarFS top level namespace aggregation

M
e
t
a
d
a
t
a

D
a
t
a

Object System 1

Object System X

Dir2.1

Obj002.1

Obj002.2

MarFS Internals Overview Multi-File
(striped Object Systems)

/GPFS-MarFS-md1 /GPFS-MarFS-mdN

Dir1.1

MultiFile - Attrs: uid, gid, mode, size, dates, etc.
Xattrs - objid repo=S, id=Obj002., objoffs=0, chunksize=256M, ObjType=Multi, NumObj=2, etc.

trashdir

/MarFS top level namespace aggregation

M
e
t
a
d
a
t
a

D
a
t
a

Object System 1

Object System X

Dir2.1

Obj002.1
Obj002.2

MarFS Internals Overview Packed-File

/GPFS-MarFS-md1 /GPFS-MarFS-mdN

Dir1.1

UniFile - Attrs: uid, gid, mode, size, dates, etc.
Xattrs - objid repo=1, id=Obj003, objoffs=4096, chunksize=256M, Objtype=Packed, NumObj=1,
Ojb=4 of 5, etc.

trashdir

/MarFS top level namespace aggregation

M
e
t
a
d
a
t
a

D
a
t
a

Object System 1

Object System X

Dir2.1

Obj003

Configuration
• Top level MarFS mountpoint
• Stanza for every name space/metadata file

system you want to bring into MarFS
– Describes how metadata is to be handled in this

part of the MarFS system
– Describes where data is to be put for files of

various sizes/shapes (into which data repo)
• Stanza for every Repo - object system/area of

object system, or other access method for
data
– Describes how data is to be stored into this data

repo, chunksizes/methods/etc.

Recoverability
• Parallel backup of the metadata file system(s)

backs up the metadata for MarFS
– (METADATA ONLY)

• Objects are encoded with CREATE TIME info
– (path,uidgid,mode,times, MarFS/other xattrs, etc.

• Parallel backup of object metadata
– Object name has some recovery info in it, so just

listing/saving the objects/buckets is useful
– Any other info your object server will allow you to

back up

Pftool
• A highly parallel copy/rsync/compare/list tool
• Walks tree in parallel, copy/rsync/compare in

parallel.
• Parallel Readdir’s, stat’s, and copy/rsinc/compare

– Dynamic load balancing
– Restart-ability for large trees or even very large files
– Repackaging: breaks up big files, coalesces small files
– To/From NFS/POSIX/parallel FS/MarFS

Load
Balancer

Scheduler

Reporter

Stat Readdir

Stat

Copy/Rsync/Co
mpare

D
o
n
e

Q
u
e
u
e

Dirs Queue

Stat Queue

Cp/R/C Queue

4 PB
BB
2

TB/S

How does it fit into our environment (circa FY16) ?

Premier Machine
2PB Dram

General IO
Nodes

Private
IO Nodes

Capacity
machines
~50-300
TB Dram

General IO
Nodes

Capacity
machines
~50-300
TB Dram

General IO
Nodes

/localscratch(s)
/sitescratch(s)
/home
/project

/sitescratch(s)
/home
/project

Local
Scratch
100 PB

1 TB/sec
1-4 Weeks

Site Scratch
10’s PB

100 GB/sec
1-4 Weeks

Private
IB

Site
IB/Ether/Lnet

Routers/switches
(damselfly)

HPSS 100
PB

10 GB/sec
Forever

Site Scratch
10’s PB

100 GB/sec
1-4 Weeks

Campaign
MarFS 100’s

PB
100’s

GB/sec
Few Years
(erasure)

Batch File
Transfer
Agents

~100 at 2-8
GB/sec per

Interactive
FTA(s)

WAN FTA(s)
Special
Security

Rules

100(s)
Gbits/sec

/localscratch(s)
/sitescratch(s)
/home
/project
/campaign
HPSS
/analytics
(HDFS other)

Parallel
load

balanced
movers

Parallel
Tape with
Disk Cache

NFS
/home

/project

Analytics
machine

potentially
disk full/big

memory
HDFS?

/sitescratch(s)
/campaign
/analytics (HDFS other)
Use HDFS – POSIX Shim for
access to POSIX resources

/sitescratch(s)
/home
/project

Security Model
• All POSIX security is obeyed by MarFS
• Addition special security can be added by configuration to manage what parts of

the name space allow metadata and data update/read
– and you can control those special permissions for interactive and batch

separately per name space.
• rm – read metadata wm – write metadata rd – read data wd – write

data ud – unlink data
• Can lock down data read/write separately from metadata read/update
• Value is not stored with the file, real time, fast way to control access.

• Object Security is provided by the following methods
– Password for Object Server access is stashed safely, can be time based,

crypto securely sent to Object Server on every request.
– Encryption in the data path to objects can be turned on
– Encryption at rest could be implemented and is on the futures list.
– Protecting the trash is essential as well

Futures
• File data versioning – using data pointers in trash
• Dual copy/MarFS erasure to enable erasure on erasure
• Metadata update logging, investigate how this might be done and

what the cost is
• Compression and Encrypton in MarFS (for repos that don’t

compress)
• Offline optimizations/sorting/indexing of attrs and user xattrs etc.
• Append or sparse support, need to consider carefully, hard to do

because of book keeping
• Other access methods HPSS, Globus, other.
• HDFS alternate access of same data, via java hdfs lib
• Offline deep reconcile/repack – if trash is lost
• Semi-direct – store data into parallel file system file(s) for Globus or

other parallel N to 1 write staging

	Slide Number 1
	Why Do We Need a MarFS
	How about a Scalable Near-POSIX File System over Object Erasure?
	MarFS Scaling (Metadata and Data)
	MarFS Internals Overview
	Simple MarFS Deployment
	Open Source, BSD License�Partners Welcome�
	Backup
	Won’t someone else do it?
	MarFS Requirements
	What is MarFS?
	What are all these storage layers?�Why do we need all these storage layers?
	What it is not!
	MarFS Internals Overview Multi-File
	MarFS Internals Overview Multi-File (striped Object Systems)
	MarFS Internals Overview Packed-File
	Configuration
	Recoverability
	Pftool
	How does it fit into our environment (circa FY16) ?
	Security Model
	Futures

