Automatic and Transparent
/0 Optimization With
Storage Integrated Runtime
Support

What is this talk about?

e Convince you that storage should be interested into [HPC] application
execution models

Add Index
/ Application

Applicati
pplication Application

Database Engine %j?dd-lndex()

D D
Data H Data Data H Data

Application and System Development

e Isolated development
e Maximize FLOPS
e Checkpoint / Restart

Application and System Development

e Isolated development
e Maximize BW/Latency
e File system interface

Conflict of Interest in System Development

4 O

o e
= /

e Isolated development
e Maximize FLOPS e Isolated development
e Checkpoint / Restart e Maximize BW/Latency

e File system interface

POSIX

Abstractions hide important parameters

application intent, data model

/ SCEMNCE \ \/\/\/\/\
Ob -
N /

pwrite (fd, data, 1.5MB, 1MB)
e unaligned write
e update multiple blocks
e locking protocols

Inflexible applications cannot adapt

storage system state, configuration

4 Y4 Y4)

SCENCE
Op | O | O |
- U\ N\ J
4 Y4 Y4)

fo:
e
&
VAN
yaN
S
N4
POSIX

N
4
SCENCE SCENCE SCENCE
0 0, 0
O | O || O
_ AN AN J
App1 App2 | App1 App2
t0 write(...) write(...) | tO write(...)
contention '

t1 write(...) blocking .

Communicating application requirements

e Database engines use SQL to communicate declarative requirements
e HPC applications are entirely different, and require different mechanisms

Application HPC Application
> SQL > ?2??
??? (Runtime)

Database Engine

D D
H Data H Data
8

/0 Middleware Stacks

common data model

\ HDF5
(HDF-specific data model
with e, elc]

Collective I/0 I/0 Pattern
Data Sieving Transform
Hints Hints

Remainder of the talk

e |llustrate challenges for existing I/0 stacks and application design
e Describe our work integrating storage into the Legion runtime
e Preliminary results

10

Motivating Example

Heterogeneous memory hierarchy
o Multiple tiers and networks

e Adaptive mesh refinement (AMR)
o Resolution-aware I/0

e Workflow systems and in-transit
o Datarendezvous

e Out-of-core algorithms

e Data management challenges

o Metadata
o Consistency

e Independent|/O

Motivating Example: Independent I/0

I/0 I/O I/O I/O /0

Computation >

12

Motivating Example: Independent I/0

I/0 I/O /0

13

Independent I/0: Consistency Challenges

Timestep 1 Timestep 2 Timestep 3
/10 110 110 /0 I/O
. ._. Computation >

14

Independent I/0: Consistency Challenges

Timestep 1 Timestep 2 Timestep 3
/10 110 110 /0 I/O
Computation >
TS State Done
1 Red (T1) Yes

Green (Xfer)

No

15

Independent I/0: Consistency Challenges

Timestep 1 Timestep 2 Timestep 3
I/O I/O I/O I/0 l/O
Computation >

TS | State Done
1 Red (T1) Yes
2 Green (T1) No

Blue (Xfer)
3 Yellow (T2) Yes

16

Independent I/0: Consistency Challenges

Timestep 1 Timestep 2 Timestep 3
/0 110 I/0 110 I/O
» ~ “Gomputation >
/ AJ
r
\
|
TS | State Done
\ / :
\ ts : .
1 Red (T1) Yes g bits bits
bits bits
bits
2 Green (T1) No
Blue (Xfer) System A
3 Yellow (T2) Yes
17

Independent |/0: Portability

I/0 I/O I/O I/O /0

Computation >

18

Independent |/0: Portability

I/O I/0 I/O I/O I/O /0

Computation >

19

Independent |/0: Portability

I/O I/0 I/O /0

20

Melding I/0 and Application Semantics

Application Runtime

s By
SCEMCE |
0‘% 2. Memory
O,
N /

Melding I/0 and Application Semantics

Application Application + Legion Runtime
(comprehensive data model with - | T — -
linearization, shape, datatype, etc) ;

HDF5 N\
/ (I-_|DF~specific data model

jel

(An unified distributed data model enables
co-design and co-optimization between
application layer and storage layer)

22

Legion Programming Model and Runtime

e Prototype built in Legion

o Parallel, data-centric, task-based

e Logical Region Data Model

o Do not commit to physical layout

e Memory hierarchy Legion Runtime
o Unified model across memory types Machin
e Data dependencies extracted from |eseweomeomeomoooee |

appl ication ‘T LTI LTTToIIITITIIIIIIITIIIIIIIIIIIIII T TTTTTomooo
o Managed by runtime
o Optimizations

“Legion: Expressing Locality and Independence with Logical Regions”,
Michael Bauer, Sean Treichler, Elliott Slaughter, Alex Aiken, SC 12 23

Legion and Persistent Memory Integration

e Our work introduces persistent
memory into Legion

e HDF5 and RADOS targets

e Legion tracks instances like any
other memory

e Persistent is transparent to Machine

———

application | GASNet Memory

: : T Z610C0p | an |
e Integrated with dependence tracking |} GPuRAm i =/ ,L_F_if_M_J--
and coherence control

Legion Runtime

24

Preliminary Results: Microbenchmark

Legion Runtime

25

Preliminary Results: Microbenchmark

checkpoint

26

Preliminary Results: Microbenchmark

27

Preliminary Results: Optimizations

D>

Bandwidth (GBE/sec)

Preliminary Results: Weak Scaling

e Application state partitioned into 256 shards
e Scaled from 4 GB to 32 GB across 2 to 16 nodes
e Compared throughput against IOR, N-1, HDF5, MPI-IO

Lustre, HDF5 (Read)

T
Legion C—
gL IOR E=—=3

4T MPI-IO, Caching

Mumber of Modes

Bandwidth (GESsec)

2.5 F

1.5

a5

Lustre, HDF5 (Write)

T
Legion 1

wdl: %/% i

Mumber of Modes

29

Preliminary Results: Weak Scaling

e Application state partitioned into 256 shards
e Scaled from 4 GB to 32 GB across 2 to 10 nodes
e Transparent integration with non-POSIX backends

RADOS Target (R/W)
1200

I I I L

Read E:::j
1000 | Write E===1

LU
6aa -

498 -

Bandwidth (MB/sec)

208 -

] | Eii [__
2 4 i
Mumber of Modes

30

Shard

Checkpoint without global barrier

e Application state partitioned into 256 shards
e 14 GB data set size (56 MB shards), fixed set of 12 nodes
e Tracked read-write phases for each shard

Legion, Lustre, HDF5

shared storage

& 2 4 & L
Time {sec)

1
1@ 12

14

Shard

Legion, RADOS

Target

— dedicated storage

& 2 4 G B
Time (=ec)

! 1
1a 12

14

31

Preliminary Results: Strong Scaling

e Application state partitioned into 256 shards
e Total application state size 14 GB

e Scaled from 4 to 32 nodes (Lustre), 2 to 12 nodes (RADOS)
{

Caching, Noise Journalin
Lustre, HDF5 = RADOS Target g
2.5 T T T 1.4 T T T 4
fBead —— — — _—
¥Write = 1.2]
5 I e i :
@ % %] @ 1 1
e, o b
s 15k e el i &
o | g o |
z | B p
g | B | % e
n [, b
oy % =
3 o | B % 0.4 .
2 0.5 %] 7 f
& .) F e =
ot ! a2]
% % '
2 s)
4 & 12 16] B 148 12
Limited DMA Number of Modes OSD Cache Number of Modes

Threads =

Conclusion

Memory hierarchies are becoming complex!
We cannot continue to just evolve applications

Storage should be interested into application execution models
o Hard-coding optimizations is bad
o Restricts flexibility and portability

Legion runtime and programming model supports pluggable memory
Integrate persistent storage as a memory

Initial results show feasibility of the system design

Enables wide range of transparent optimizations

Questions?
o Noah Waktins (jayhawk@soe.ucsc.edu)

33

