
Automatic and Transparent
I/O Optimization With
Storage Integrated Runtime
Support

Noah Watkins
Carlos Maltzahn

Zhihao Jia
Alex Aiken

Galen Shipman
Pat McCormick

UC Santa Cruz Stanford LANL

What is this talk about?

● Convince you that storage should be interested into [HPC] application
execution models

2

Application Application
Application

Database Engine

Data Data Data Data Data Data

Add Index

Add-Index()

Application and System Development

3

bits
bits

SCIENCE

bits
bits

bits
bits

bits
bits

bitsPO
SI

X ?
● Isolated development
● Maximize FLOPS
● Checkpoint / Restart

Application and System Development

4

bits
bits

SCIENCE

bits
bits

bits
bits

bits
bits

bitsPO
SI

X?
● Isolated development
● Maximize BW/Latency
● File system interface

Conflict of Interest in System Development

5

bits
bits

SCIENCE

bits
bits

bits
bits

bits
bits

bitsPO
SI

X

I/O

● Isolated development
● Maximize FLOPS
● Checkpoint / Restart

● Isolated development
● Maximize BW/Latency
● File system interface

Abstractions hide important parameters

6

bits
bits

SCIENCE

bits
bits

bits
bits

bits
bits

bitsPO
SI

X

I/O

pwrite(fd, data, 1.5MB, 1MB)
● unaligned write
● update multiple blocks
● locking protocols

application intent, data model

Inflexible applications cannot adapt

7

bits
bits

SCIENCE

bits
bits

bits
bits

bits
bits

bitsPO
SI

X

I/O

SCIENCE

SCIENCE

SCIENCE

SCIENCE

SCIENCE

SCIENCE

SCIENCE

SCIENCE

write(...) write(...) write(...)

write(...)

App1 App2
t0

App1 App2
t0

t1contention
blocking

storage system state, configuration

Communicating application requirements

8

Application

Database Engine

Data Data

SQL

HPC Application

??? (Runtime)

Data Data

???

● Database engines use SQL to communicate declarative requirements
● HPC applications are entirely different, and require different mechanisms

I/O Middleware Stacks

9

bits
bits

bits
bits

bits
bits

bits
bits

bitsPO
SI

X

Array I/O

common data model

Collective I/O
Data Sieving
Hints

I/O Pattern
Transform
Hints

Remainder of the talk

● Illustrate challenges for existing I/O stacks and application design
● Describe our work integrating storage into the Legion runtime
● Preliminary results

10

Motivating Example

● Heterogeneous memory hierarchy
○ Multiple tiers and networks

● Adaptive mesh refinement (AMR)
○ Resolution-aware I/O

● Workflow systems and in-transit
○ Data rendezvous

● Out-of-core algorithms
● Data management challenges

○ Metadata
○ Consistency

● Independent I/O

11

Motivating Example: Independent I/O

12

Computation

I/O I/O

bits
bits

bits
bits

bits
bits

bits
bits

bits

System A

I/OI/O I/O

Motivating Example: Independent I/O

13

Computation

I/O I/O

bits
bits

bits
bits

bits
bits

bits
bits

bits

System A

I/OI/O I/O
compute();
a = async_io();
compute();
wait(a);
compute(a);

Independent I/O: Consistency Challenges

14

Computation

I/O I/O

bits
bits

bits
bits

bits
bits

bits
bits

bits

System A

I/OI/O I/O

Timestep 1 Timestep 2 Timestep 3

Independent I/O: Consistency Challenges

15

Computation

I/O I/O

bits
bits

bits
bits

bits
bits

bits
bits

bits

System A

I/OI/O I/O

Timestep 1 Timestep 2 Timestep 3

TS State Done

1 Red (T1) Yes

2 Green (Xfer) No

Independent I/O: Consistency Challenges

16

Computation

I/O I/O

bits
bits

bits
bits

bits
bits

bits
bits

bits

System A

I/OI/O I/O

Timestep 1 Timestep 2 Timestep 3

TS State Done

1 Red (T1) Yes

2 Green (T1)
Blue (Xfer)

No

3 Yellow (T2) Yes

Independent I/O: Consistency Challenges

17

Computation

I/O I/O

bits
bits

bits
bits

bits
bits

bits
bits

bits

System A

I/OI/O I/O

Timestep 1 Timestep 2 Timestep 3

TS State Done

1 Red (T1) Yes

2 Green (T1)
Blue (Xfer)

No

3 Yellow (T2) Yes

Independent I/O: Portability

18

Computation

I/O I/O

bits
bits

bits
bits

bits
bits

bits
bits

bits

System A

I/OI/O I/O

Independent I/O: Portability

19

Computation

I/O I/OI/OI/O

bits
bits

bits
bits

bits
bits

bits
bits

bits

System B

I/OI/O

Independent I/O: Portability

20

Computation

I/O I/OI/OI/O

bits
bits

bits
bits

bits
bits

bits
bits

bits

System B

I/OI/O
compute();
a = async_io();
compute();
wait(a);
compute(a);

Melding I/O and Application Semantics

21

bits
bits

SCIENCE

bits
bits

bits
bits

bits
bits

bits

1. Data model

2. Memory
Model

3. Data
Dependence

Intent

Intent

I/O

Application Runtime

Melding I/O and Application Semantics

22

bits
bits

SCIENCE

bits
bits

bits
bits

bits
bits

bits

1. Data model

2. Memory
Model

3. Data
Dependence

Intent

Intent

I/O

Legion Programming Model and Runtime

23

Legion Runtime

Machine

GASNet Memory

GPU RAM ZeroCopy RAM

● Prototype built in Legion
○ Parallel, data-centric, task-based

● Logical Region Data Model
○ Do not commit to physical layout

● Memory hierarchy
○ Unified model across memory types

● Data dependencies extracted from
application
○ Managed by runtime
○ Optimizations

“Legion: Expressing Locality and Independence with Logical Regions”,
Michael Bauer, Sean Treichler, Elliott Slaughter, Alex Aiken, SC 12

Legion and Persistent Memory Integration

24

Legion Runtime

Machine

GASNet Memory

GPU RAM ZeroCop
y RAM

● Our work introduces persistent
memory into Legion

● HDF5 and RADOS targets
● Legion tracks instances like any

other memory
● Persistent is transparent to

application
● Integrated with dependence tracking

and coherence control
HDF5 RADOS

Preliminary Results: Microbenchmark

25

HDF5 (FS) librados (Object)

Legion Runtime

Preliminary Results: Microbenchmark

26

HDF5 (FS) librados (Object)

Legion Runtime

checkpoint

Preliminary Results: Microbenchmark

27

HDF5 (FS) librados (Object)

Legion Runtime

restart

Preliminary Results: Optimizations

28

HDF5 (FS) librados (Object)

Legion RuntimeOptimizations

● Sharding

● Independent I/O

Preliminary Results: Weak Scaling

29

Lustre, HDF5 (Read) Lustre, HDF5 (Write)

MPI-IO, Caching N-N
N-1

● Application state partitioned into 256 shards
● Scaled from 4 GB to 32 GB across 2 to 16 nodes
● Compared throughput against IOR, N-1, HDF5, MPI-IO

Preliminary Results: Weak Scaling

30

RADOS Target (R/W)

● Application state partitioned into 256 shards
● Scaled from 4 GB to 32 GB across 2 to 10 nodes
● Transparent integration with non-POSIX backends

Checkpoint without global barrier

31

Legion, Lustre, HDF5 Legion, RADOS Target

shared storage dedicated storage

● Application state partitioned into 256 shards
● 14 GB data set size (56 MB shards), fixed set of 12 nodes
● Tracked read-write phases for each shard

● Application state partitioned into 256 shards
● Total application state size 14 GB
● Scaled from 4 to 32 nodes (Lustre), 2 to 12 nodes (RADOS)
●

Preliminary Results: Strong Scaling

32

Lustre, HDF5 RADOS Target

OSD Cache

Journaling

Limited DMA
Threads

Caching, Noise

Conclusion

● Memory hierarchies are becoming complex!
● We cannot continue to just evolve applications
● Storage should be interested into application execution models

○ Hard-coding optimizations is bad
○ Restricts flexibility and portability

● Legion runtime and programming model supports pluggable memory
● Integrate persistent storage as a memory
● Initial results show feasibility of the system design
● Enables wide range of transparent optimizations
● Questions?

○ Noah Waktins (jayhawk@soe.ucsc.edu)

33

