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What is this talk about?

● Convince you that storage should be interested into [HPC] application 
execution models
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Application and System Development
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Conflict of Interest in System Development
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Abstractions hide important parameters
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pwrite(fd, data, 1.5MB, 1MB)
● unaligned write
● update multiple blocks
● locking protocols

application intent, data model



Inflexible applications cannot adapt
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Communicating application requirements
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● Database engines use SQL to communicate declarative requirements
● HPC applications are entirely different, and require different mechanisms



I/O Middleware Stacks
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Remainder of the talk

● Illustrate challenges for existing I/O stacks and application design
● Describe our work integrating storage into the Legion runtime
● Preliminary results
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Motivating Example

● Heterogeneous memory hierarchy
○ Multiple tiers and networks

● Adaptive mesh refinement (AMR)
○ Resolution-aware I/O

● Workflow systems and in-transit
○ Data rendezvous

● Out-of-core algorithms
● Data management challenges

○ Metadata
○ Consistency

● Independent I/O
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Motivating Example: Independent I/O
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Motivating Example: Independent I/O
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compute();
a = async_io();
compute();
wait(a);
compute(a);



Independent I/O: Consistency Challenges
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Independent I/O: Consistency Challenges
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Independent I/O: Portability
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Independent I/O: Portability
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Independent I/O: Portability
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Melding I/O and Application Semantics
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Melding I/O and Application Semantics
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Legion Programming Model and Runtime
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Legion Runtime

Machine

GASNet Memory

GPU RAM ZeroCopy RAM

● Prototype built in Legion
○ Parallel, data-centric, task-based

● Logical Region Data Model
○ Do not commit to physical layout

● Memory hierarchy
○ Unified model across memory types

● Data dependencies extracted from 
application
○ Managed by runtime
○ Optimizations

“Legion: Expressing Locality and Independence with Logical Regions”, 
Michael Bauer, Sean Treichler, Elliott Slaughter, Alex Aiken, SC 12



Legion and Persistent Memory Integration
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Legion Runtime

Machine

GASNet Memory

GPU RAM ZeroCop
y RAM

● Our work introduces persistent 
memory into Legion

● HDF5 and RADOS targets
● Legion tracks instances like any 

other memory
● Persistent is transparent to 

application
● Integrated with dependence tracking 

and coherence control
HDF5 RADOS



Preliminary Results: Microbenchmark
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Preliminary Results: Microbenchmark
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Preliminary Results: Microbenchmark
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Preliminary Results: Optimizations
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HDF5 (FS) librados (Object)

Legion RuntimeOptimizations

● Sharding

● Independent I/O



Preliminary Results: Weak Scaling
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Lustre, HDF5 (Read) Lustre, HDF5 (Write)

MPI-IO, Caching N-N
N-1

● Application state partitioned into 256 shards
● Scaled from 4 GB to 32 GB across 2 to 16 nodes
● Compared throughput against IOR, N-1, HDF5, MPI-IO



Preliminary Results: Weak Scaling
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RADOS Target (R/W)

● Application state partitioned into 256 shards
● Scaled from 4 GB to 32 GB across 2 to 10 nodes
● Transparent integration with non-POSIX backends



Checkpoint without global barrier
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Legion, Lustre, HDF5 Legion, RADOS Target

shared storage dedicated storage

● Application state partitioned into 256 shards
● 14 GB data set size (56 MB shards), fixed set of 12 nodes
● Tracked read-write phases for each shard



● Application state partitioned into 256 shards
● Total application state size 14 GB
● Scaled from 4 to 32 nodes (Lustre), 2 to 12 nodes (RADOS)
●

Preliminary Results: Strong Scaling

32

Lustre, HDF5 RADOS Target

OSD Cache

Journaling

Limited DMA 
Threads

Caching, Noise



Conclusion

● Memory hierarchies are becoming complex!
● We cannot continue to just evolve applications
● Storage should be interested into application execution models

○ Hard-coding optimizations is bad
○ Restricts flexibility and portability

● Legion runtime and programming model supports pluggable memory
● Integrate persistent storage as a memory
● Initial results show feasibility of the system design
● Enables wide range of transparent optimizations
● Questions?

○ Noah Waktins (jayhawk@soe.ucsc.edu)
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