
Experiences in Using OS-
level Virtualization for

Block I/O

Dan Huang, University of Central Florida
Jun Wang, University of Central Florida

Gary Liu, Oak Ridge National Lab

University of Central Florida

Contents

 Motivation
 Background for Virtualization
 Our Solution: I/O Throttling Middleware
 Evaluations
 Related Work
 Conclusion
 Acknowledgement

University of Central Florida

Contents

 Motivation
 Background for Virtualization
 Our Solution: I/O Throttling Middleware
 Evaluations
 Related Work
 Conclusion
 Acknowledgement

University of Central Florida

Motivation

 Nowadays in HPC, job schedulers such as
PBS/TORQUE are used to assign physical nodes,
exclusively, to users for running jobs.
 Easy configuration through batch scripts
 Low resource utilization
 Hard to meet interactive and ad-hoc analytics’ QoS

requirements.

 Multiple jobs access to shared distributed or parallel file
systems to load or save data.
 Interference on PFS
 Negative impact on jobs’ QoS

University of Central Florida

Resource Consolidation in Cloud
Computing
 In data centers, cloud computing has been widely

deployed for elastic resource provisioning.
 High isolation with low mutual interference

 Cloud computing employs various virtualization
technologies to consolidate physical resources.
 Hypervisor-based virtualization: VMWare, Xen, KVM
 OS-level virtualization: Linux container, OpenVZ, Docker

University of Central Florida

Virtualization in HPC

 HPC uses high-end and dedicated nodes to run scientific
computing jobs.
 Could HPC analysis cluster be virtualized with low

overhead?
 What type of virtualization should be adopted?

 According to the previous studies[1, 2, 3], the overhead
of hypervisor-based virtualization is high.
 Overhead on disk throughput ≈ 36%
 Overhead on memory throughput ≈ 53%

 [1] Nikolaus Huber, Marcel von Quast, Michael Hauck, and Samuel Kounev. Evaluating and modeling virtualization performance overhead for cloud environments. In

CLOSER, pages 563-573, 2011.
 [2] Stephen Soltesz, Herbert Potzl, Marc E Fiuczynski, Andy Bavier, and Larry Peterson. Container-based operating system virtualization: a scalable, high-performance

alternative to hypervisors. In ACM SIGOPS Operating Systems Review, volume 41, pages 275-287. ACM, 2007.
 [3] Miguel G Xavier, Marcelo Veiga Neves, Fabio D Rossi, Tiago C Ferreto, Timoteo Lange, and Cesar AF De Rose. Performance evaluation of container-based

virtualization for high performance computing environments. In Parallel, Distributed and Network-Based Processing (PDP), 2013 21st Euromicro International Conference
on, pages 233-240. IEEE, 2013.

University of Central Florida

Contents

 Motivation
 Background for Virtualization
 Our Solution: I/O Throttling Middleware
 Evaluations
 Related Work
 Conclusion
 Acknowledgement

University of Central Florida

Hypervisor and OS-level
Virtualization
 Virtualization technology takes advantage of the trade-off

between isolation and overhead.

 Hypervisor-based virtualization has a hypervisor (or VM
monitor) layer under the guest OS and it introduces high
performance overhead and is not acceptable to HPC.

 OS-level virtualization (container based) is a lightweight
layer in Linux kernel.

University of Central Florida

Hypervisor and OS-level
Virtualization (cont.)

University of Central Florida

The Internal Components of OS-
level Virtualization
 OS-level virtualization shares the same operating system

kernel.

 1) Control Groups (CGroups)
 CGroups controls the resource usage per process group.

 2) Linux Namespaces
 Linux Namespace creates a set of isolated namespaces such as

PID and Network Namespaces etc.

University of Central Florida

Allocating Block I/O via OS-level
Virtualization
 There are two methods for allocating block I/O in

CGroups module.

 1) Throttling functionality
 Set an upper limit to a process group’s block I/O

 2) Weight functionality

 Assign shares of block I/O to a group of processes

University of Central Florida

Contents

 Motivation
 Background for Virtualization
 Our Solution: I/O Throttling Middleware
 Evaluations
 Related Work
 Conclusion
 Acknowledgement

University of Central Florida

Create Virtual Node (VNode)

University of Central Florida

The Gap Between Virtual Node and
PFS

Configuration Gap:
The shared I/O resources of
a PFS is hard to be
controlled by current
resource allocation
mechanisms, since the I/O
configurations on users'
VNodes can not take effect
on a remote PFS.

University of Central Florida

The Design of I/O Throttling
Middleware

University of Central Florida

The Structure of VNode Sync

VNode Sync:
1) Accept I/O configurations
2) Apply I/O configurations

into VNodes
3) Intercept users’ I/O

request handlers
4) Insert handlers into

corresponding VNodes

University of Central Florida

Contents

 Motivation
 Background for Virtualization
 Our Solution: I/O Throttling Middleware
 Evaluations
 Related Work
 Conclusion
 Acknowledgement

University of Central Florida

Single Node Testbed

The Configuration of Single Node Testbed
Make& Model Dell XPS 8700
CPU Intel i7 Processor, 64 bit, 18 MB L2, 2.8 GHz, 4 cores
RAM 8×2 GB
Internal Hard Disk 1× Western Digital Black SATA 7200rpm 1 TB
Local File System EXT3
Operating System CentOS 6 64-bit, kernel 2.6.32 504.8.1.el6

University of Central Florida

Distributed Testbed
The Configuration of Marmot Cluster

Reserve 17 nodes in Marmot
Make& Model Dell PowerEdge 1950
CPU 2 Opteron 242, 64 bit, 1 MB L2, 1GHz
RAM 8×2.0 GB RDIMM, PC3200, CL3
Internal Hard Disk 1× Western Digital Black SATA 7200rpm 2 TB
Network Connection 1 × Gigabit Ethernet
Operating System CentOS 6 64-bit, 2.6.32 504.8.1.el6
Switch Make & Model 152 port Extreme Networks BlackDiamond 6808
HDFS 1 head node and 16 storage nodes
Lustre 1 head node, 8 storage nodes and 8 client nodes

University of Central Florida

Read Overhead on Single Node

 0

 0.2

 0.4

 0.6

 0.8

 1

1 V N _ 1 6 K B1 V N _ 1 6 M B2 V N _ 1 6 K B2 V N _ 1 6 M B4 V N _ 1 6 K B4 V N _ 1 6 M B8 V N _ 1 6 K B8 V N _ 1 6 M

R e a d B a n d w i d t h N o r m a l i z e d

 t o P h y s i c a l C a s e

Numble of VNodes and Object Size

The worst read overhead is less than 10%.

University of Central Florida

 0
 20
 40
 60
 80

 100
 120
 140

P h y _ 1 6 K BP h y _ 1 6 M B1 0 _ 1 6 K B1 0 _ 1 6 M B2 0 _ 1 6 K B2 0 _ 1 6 M B3 0 _ 1 6 K B3 0 _ 1 6 M B4 0 _ 1 6 K B4 0 _ 1 6 M BR e a d B a n d w i d t h (M B / s)

Throttle Rate on Bottom VNode (MB/s) and Object Size

Throttling Read on Single Node

The throttle functionality could guarantee the process’s I/O does not exceed
the upper limits. But it is largely influenced by other concurrent processes

10M
B/s

20M
B/s

30M
B/s

40M
B/s

R
ead

University of Central Florida

 0

 0.2

 0.4

 0.6

 0.8

 1

1 V N _ 1 6 K B1 V N _ 1 6 M B2 V N _ 1 6 K B2 V N _ 1 6 M B3 V N _ 1 6 K B3 V N _ 1 6 M B4 V N _ 1 6 K B4 V N _ 1 6 M

R e a d B a n d w i d t h N o r m a l i z e d

 t o P h y s i c a l C a s e

Numble of VNodes and Object Size

Weight Read on Single Node

The result shows that the overhead of the weight function is less that 8%. The
weight module does not suffer from interference and can provide effective
isolation.

100%

50%

50%

50%

25%

25%

40%

20%

20%

20%

R
ead

University of Central Florida

I/O Throttling on PFS

 0

 200

 400

 600

 800

 1000

 1200

W /O _ V N1 0 M B /s 2 0 M B /s 4 0 M B /s 8 0 M B /s 1 6 0 M B /s 0

 20

 40

 60

 80

 100

 120

 140
A g g r e g a t e R e a d B a n d w i d t h (M B / s) A g g r e g a

 f o r L

Throttle Rate to DFS Block I/O

HDFS with Data Locality
HDFS W/O Data Locality

Lustre N-to-N
Lustre N-to-1

I/O throttling middleware can effectively control the aggregate bandwidth of
PFSs and introduces negligible overhead

University of Central Florida

I/O Throttling on Real Application

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

W /O _ D MW /O _ T H T L5 M B /s1 0 M B /s2 0 M B /s4 0 M B /s6 0 M B /s8 0 M B /s1 0 0 M B /s

F i n i s h T i m e (m s) o f P a r a V i e w

Throttle Rate to Competing Daemons' I/O

Data Load Time of ParaView (ms)
Computing Time of Paraview (ms)

The finish time of ParaView is increasing as the I/O throttle rate of background
daemons increasing.

University of Central Florida

Contents

 Motivation
 Background for Virtualization
 Our Solution: I/O Throttling Middleware
 Evaluations
 Related Work
 Conclusion
 Acknowledgement

University of Central Florida

Related Work

 OS-level virtualization:
 Authors [1, 2, 3], have evaluated the overhead (CPU, memory

and disk) of OS-level virtualization compared with the traditional
hypervisor based virtualization.

 Multilanes [4] builds an isolated I/O stack for eliminating
contentions on shared kernel structures and locks, while
applying OS-level virtualization to control the I/O of fast block
devices (SSD).

 Resource allocation platform via OS-level virtualization:
 Mesos [5] is a resource allocation platform for multiple users and

multiple computing platforms such as Hadoop and MPI. Mesos
takes advantage of OS-level virtualization (LXC) to provide
cluster resource sharing (only CPU and memory) in a fine-
grained manner.

University of Central Florida

Contents

 Motivation
 Background for Virtualization
 Our Solution: I/O Throttling Middleware
 Evaluations
 Related Work
 Conclusion
 Acknowledgement

University of Central Florida

Conclusion

 In this paper, we investigate the overhead and isolation
of OS-level virtualization on block I/O control.

 The block I/O control of OS-level virtualization introduces
less than 15% overhead in average.

 The weight functionality introduces at most 8% overhead
and shows good performance isolation.

 The throttle functionality introduces low performance
overhead but has limited performance on the isolation.

 The I/O throttling middleware can allocate PFS’s I/O to
multiple users based on their priorities, with negligible
overhead.

University of Central Florida

Acknowledgement

 The experiments of this work are conducted at the
PRObE Marmot cluster.

University of Central Florida

Reference
 [1] Nikolaus Huber, Marcel von Quast, Michael Hauck, and Samuel Kounev. Evaluating and

modeling virtualization performance overhead for cloud environments. In CLOSER, pages 563-
573, 2011.

 [2] Stephen Soltesz, Herbert Potzl, Marc E Fiuczynski, Andy Bavier, and Larry Peterson.
Container-based operating system virtualization: a scalable, high-performance alternative to
hypervisors. In ACM SIGOPS Operating Systems Review, volume 41, pages 275-287. ACM,
2007.

 [3] Miguel G Xavier, Marcelo Veiga Neves, Fabio D Rossi, Tiago C Ferreto, Timoteo Lange, and
Cesar AF De Rose. Performance evaluation of container-based virtualization for high performance
computing environments. In Parallel, Distributed and Network-Based Processing (PDP), 2013 21st
Euromicro International Conference on, pages 233-240. IEEE, 2013.

 [4] Junbin Kang, Benlong Zhang, Tianyu Wo, Chunming Hu, and Jinpeng Huai. Multilanes:
providing virtualized storage for os-level virtualization on many cores. In FAST, pages 317-329,
2014.

 [5] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy
Katz, Scott Shenker, and Ion Stoica. Mesos: a platform for fine-grained resource sharing in the
data center. In Proceedings of the 8th USENIX conference on Networked systems design and
implementation, NSDI'11, pages 22-22, Berkeley, CA, USA, 2011. USENIX Association.

University of Central Florida

	Experiences in Using OS-level Virtualization for Block I/O
	Contents
	Contents
	Motivation
	Resource Consolidation in Cloud Computing
	Virtualization in HPC
	Contents
	Hypervisor and OS-level Virtualization
	Hypervisor and OS-level Virtualization (cont.)
	The Internal Components of OS-level Virtualization
	Allocating Block I/O via OS-level Virtualization
	Contents
	Create Virtual Node (VNode)
	The Gap Between Virtual Node and PFS
	The Design of I/O Throttling Middleware
	The Structure of VNode Sync
	Contents
	Single Node Testbed
	Distributed Testbed
	Read Overhead on Single Node
	Throttling Read on Single Node
	Weight Read on Single Node
	I/O Throttling on PFS
	I/O Throttling on Real Application
	Contents
	Related Work
	Contents
	Conclusion
	Acknowledgement
	Reference
	Slide Number 31

