
Experiences in Using OS-level Virtualization for Block I/O

Dan Huang1, Jun Wang1, Qing Liu2, Jiangling Yin1, Xuhong Zhang1, Xunchao Chen1

1Department of Electrical Engineering and Computer Science
1University of Central Florida, Orlando, FL
2Oak Ridge National Lab, Oak Ridge, TN

1{ dhuang, jwang, jyin, xzhang, xchen}@eecs.ucf.edu 2{liuq}@ornl.gov

ABSTRACT
Today, HPC clusters commonly use Resource Management
Systems such as PBS and TORQUE to share physical re-
sources. These systems enable resources to be shared by
assigning nodes to users exclusively in non-overlapping time
slots. With virtualization technology, users can run their ap-
plications on the same node with low mutual interference.
However, the overhead introduced by the virtual machine
monitor or hypervisor is too high to be accepted, because
efficiency is key to many HPC applications. OS-level vir-
tualization (such as Linux Containers) offers a lightweight
virtualization layer, which promises a near-native perfor-
mance and is adopted by some BigData resource sharing
platforms such as Mesos. Nevertheless, OS-level virtualiza-
tion’s overhead and isolation on block devices have not been
completely evaluated, especially when applied to a shared
distributed/parallel file system (D/PFS) such as HDFS or
Lustre. In this paper, we thoroughly evaluate the overhead
and isolation involved in sharing block I/O via OS-level vir-
tualization on the local disk and D/PFSs. Meanwhile, to
assign D/PFS storage resources to users, a middleware sys-
tem is proposed and implemented to bridge the configuration
gap between virtual clusters and remote D/PFSs.

1. INTRODUCTION
In current HPC clusters, Resource Management Systems

(RMS), such as PBS/TORQUE [8] are used to schedule
and allocate resources. Facilitated by PBS/TORQUE, HPC
cluster resources can be shared among multiple users. Typ-
ically, PBS and TORQUE accept users’ jobs by executing
batches and then reserving physical nodes in a cluster to run
those jobs. However, without state-of-the-art virtualization
technology to isolate assigned resources, applications from
different users will work with mutual interference on the
same node.

Recently, cloud computing has been widely deployed in
data centers and privately owned clusters because it can pro-
vide high efficiency and elastic resource consolidation [19].

c©2015 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor
or affiliate of the United States government. As such, the United States
Government retains a nonexclusive, royalty-free right to publish or repro-
duce this article, or to allow others to do so, for Government purposes only.

PDSW2015, November 15-20, 2015, Austin, TX, USA
c©2015 ACM. ISBN 978-1-4503-4008-3/15/11 ...$15.00

DOI: http://dx.doi.org/10.1145/2834976.2834982.

Cloud computing platform is becoming an infrastructure for
various MPI-based HPC Analytics and data-intensive ana-
lytics such as MapReduce [12], Hadoop [21]. For example,
Amazon EC2 has provided a dedicated cluster equipped with
high-end virtual nodes with high-speed network connection
for scientists to run simulations and data analytics. In such
environment, physical machines are virtualized, and virtual
machines (VMs) are bridged as virtual clusters. Users run
data-intensive and HPC analytics on such virtual clusters.

Nevertheless, despite its benefits, cloud computing and
virtualization technologies have not been fully accepted by
HPC communities because of the overhead introduced by the
hypervisor. Several studies have been conducted to eval-
uate the performance overhead of virtualization. In gen-
eral, researches [15, 20, 22] have demonstrated that tra-
ditional hypervisor-based virtualization (such as Xen [10],
VMware [9] and KVM [2]) has a high performance overhead,
specially in terms of memory and I/O (up to 40%).

Compared to hypervisor-based Virtualization, OS-level vir-
tualization (such as Docker [1], OpenVZ [6] and Linux Con-
tainers (LXC) [3]) implements a lightweight virtualization
layer in Linux kernel, which promises a low performance
overhead [20, 22] (less than 2% in CPU and Memory). In
this setting, OS-level virtualization can be a viable option
for HPC data intensive analytics and provide low-overhead
performance isolation. The use of OS-level virtualization
could improve resource sharing and maintain multiple iso-
lated userspace instances. For instance, Mesos [14] is a plat-
form that uses LXC for sharing a cluster between multiple
diverse cluster computing frameworks, such as Hadoop and
MPI.

However, the performance of allocating and isolating block
device resources via OS-level virtualization hasn’t been com-
pletely evaluated. This is due to the fact that some function-
alities used to control block I/O are still under development
and not clearly defined. For instance, Mesos claims its cur-
rent release only supports assignment of CPU and memory
to jobs and will cover block devices in the future. On the
other hand, various storage or computing platforms such as
Hadoop File System, Map/Reduce, Spark, or MPI can be
deployed on current BigData/HPC analysis clusters. Most
HPC MPI-based and BigData Hadoop-based jobs retrieve
data from remote distributed files systems (DFS) such as
HDFS [11] or Lustre [4]. Even if users could isolate their jobs
in virtual nodes (in this paper we refer it as VNode) and
assign local block device resources to them via various vir-
tualization technologies, these jobs may contend with each
other over elements within the D/PFS, such as I/O node.

13

For instance, when a user runs ParaView [7] to load and vi-
sualize scientific data from a remote D/PFS such as Lustre,
Lustre can simultaneously stage data for other jobs, such
as the resilient checkpoint jobs issured by Scalable Check-
point/Restart (SCR). As a result, the interference on the
shared remote D/PFS will result in an unpredictable per-
formance.

In this paper, we thoroughly evaluate the overhead and
isolation of OS-level virtualization’s block I/O control. Based
on the evaluation results, we analyze the limitations and ad-
vantages of block I/O control. For allocating and isolating
a D/PFS’s I/O resources, we design a I/O Middleware sys-
tem, which enables administrators to assign not only local
block I/O to users but also remote D/PFS resources dynam-
ically. The results show that with this middleware system,
the high-priority applications’ quality of service can be guar-
anteed by assigning as much of a D/PFS’s I/O resources as
they request.

2. BACKGROUND FOR OS-LEVEL VIRTU-
ALIZATION

In recent years, the emergence of OS-level virtualization
has become an alternative to hypervisor based VMs. Hy-
pervisor based virtualization provides an abstraction layer
on top of the hardware or host operating system. However,
OS-level virtualization as a Linux kernel module takes ef-
fect at the kernel level, offering abstractions directly for a
group of processes. The OS-level virtualization shares the
same operating system kernel, as a result, it will be less
isolated than hypervisor based virtualization. In OS-level
virtualization, the isolation and resource allocation in OS-
level virtualization is done by Linux Namespace and Con-
trol Groups (cgroups). Linux Namespace creates a set of
namespaces such as PID and Network Namespaces, which
allow each virtual node to have a private process space and
a network protocol stack. CGroups controls the resource
usage per process group. Specifically, cgroups is used to
limit or prioritize CPU, memory and I/O usage for OS-level
virtualization. The block I/O control within cgroups pro-
vides two functionalities, proportional weight division and
I/O throttle. The proportional weight is implemented in the
Completely Fair Queuing (CFQ) I/O scheduler. This pol-
icy allows users to assign weights to specific process groups.
I/O throttle is used to set an upper limit on the read/write
bandwidth of a specific block device.

3. I/O MIDDLEWARE SYSTEM DESIGN
In the D/PFS setting, when multiple users share a cluster

via OS-level virtualization, CPU and memory resources can
be configured into each virtual cluster. However, control-
ling I/O resources that are shared on a D/PFS for a specific
user remains an unsolved challenge in current resource con-
trol platforms. Also, the high priority I/O intensive jobs
may interfere with other jobs on a shared D/PFS. For in-
stance, when a user performs interactive analytics such as
ParaView, other users are simultaneously reading logs from
the same D/PFS. In order to guarantee that ParaView will
finish in time, we need to throttle the I/O rate of other low-
priority users’ reads to a lower level so that more bandwidth
can be allocated to ParaView. In this section, we propose a
middleware system, VNode Sync, to achieve this function-
ality in D/PFS (HDFS or Lustre).

Node Node Node Node

VNode VNode VNode VNode VNode VNode VNode VNode

User1 User2

Lustre

VNode
Sync

VNode
Sync

Figure 1: The Architecture of VNode Cluster

3.1 System Architecture
As shown in Figure 1, a physical cluster is a set of phys-

ical nodes connected by switches. If physical machines are
attached with local disks, the Hadoop File System (HDFS)
could be deployed on the physical cluster. In addition, if sci-
entists intend to migrate data from remote storage nodes,
remote parallel file systems (Lustre) can be accessed as well.
VNodes are process containers in physical nodes and can be
assigned resources such as CPU, memory, block I/O etc via
cgroups. A virtual cluster is formed by a group of VNodes
and assigned to users. VNode Sync is designed for imple-
menting block I/O configurations on D/PFSs. Partitioning
I/O bandwidth from a shared D/PFS is currently an un-
solved problem. We will introduce this component in the
following subsection in detail. On top of virtual cluster,
there is a component named Multi-user Coordinator, which
distributes shared D/PFS resources to users based on their
priority.

3.2 Synchronizing Users’ Disk I/O on D/PFS
CGroups, a module in OS-level virtualization, can throt-

tle or weight the local disk I/O for different process groups.
Linux Container, Mesos and Docker have implemented their
resource controlling features via cgroups. However, in most
BigData/HPC applications, such as MPI-based ParaVivew,
Hadoop-based MapReduce jobs, retrieve data from remote
D/PFSs (Lustre or HDFS). In such situations, the I/O con-
figuration on local disk I/O is not feasible to control a remote
D/PFS’s I/O. In other words, users are assigned a number
of VNodes to run their jobs. The CPU and memory re-
sources are assigned and isolated in VNodes. The shared
I/O resources of a D/PFS can not be controlled via current
resource allocation mechanisms since the I/O configurations
on users’ VNodes can not take effect on a remote D/PFS.
In order to bridge this gap, we propose a component called
VNode Sync, which is based on the block I/O throttle func-
tionality of cgroups.

Typically, each user is assigned two sets of VNodes. The
first one is used to construct virtual clusters to run jobs. The
second set of VNodes is deployed in the D/PFS’s storage
nodes and each VNode is used for controlling the I/O band-
width of the host storage node based on the corresponding
user’s priority. The VNode Sync accepts users’ I/O configu-
rations from the Multi-user Coordinator and applies them on
a D/PFS’s storage nodes via Linux cgroups. On each storage

14

node, a number of VNodes are initiated for D/PFS users.
Technically, VNode Sync intercepts users’ I/O requests and
the D/PFS’s I/O request handlers and then places these
I/O handlers into the users’ configured VNodes to control
the I/O throughput to specific users. We take HDFS as an
example to specify this mechanism. In HDFS, when a user
requests to read a file, the master node will tell the user
to retrieve file chunks from a storage node. Then, the user
constructs a TCP connection with the storage node to re-
quest specific file chunks. When the requests are accepted,
this storage node will spawn a number of threads to handle
the TCP connection, load data from the disk, and transfer
data. At this point, our proposed VNode Sync will inter-
cept both the user’s requests and the storage node’s request
handler processes, and put these processes into the user’s
configured VNode. Inside VNode, cgroups will apply con-
figured I/O policies, such as the proportion of shared block
I/O resources.

The Multi-user Coordinator is deployed on a physical node
to partition the shared D/PFS’s I/O resources to users based
on their priority. In order to assign the aggregate I/O re-
sources of D/PFSs to users efficiently, we design Algorithm
1, which is used to throttle the block I/O of active users
based on their priorities. For example, the total bandwidth
of each storage node is 200 MB/s. If there are three users,
whose priorities are 4, 8 and 8, according the algorithm, the
first user’s block I/O bandwidth will be throttled to under
40 MB/s on each storage node and other two users will both
be throttled to under 80 MB/s.

Algorithm 1 Priority-based Algorithm for Throttling
D/PFS I/O

1: Let N be the number of users
2: Let P = {p1, p2, ..., pn} be the set of N priority values

for N users. Priority range is from 1 to 100 and 100 is
the highest.

3: Let BW be the total aggregate I/O bandwidth that
D/PFS’s storage nodes can provide.

4: Steps:
5: // throttle block I/O at thti to the Useri based on the

priorities
6: i = 1
7: if N = 1 then
8: tht1 = BW
9: else

10: for i from 1 to N do
11: thti = BW · pi∑n

j=1 pj

12: set block I/O throttle rate thti to useri’s VNode
13: end for
14: end if

4. VNODE EVALUATION ON SINGLE NODE
TESTBED

In this section, we evaluate the overhead and isolation
involved with sharing block I/O via VNodes on a single node
testbed whose configuration is shown in Table 1. We run
a set of control experiments on block devices (hard disk)
with an HPC I/O benchmark called MPI-IO Test [5], which
was developed by the Los Alamos National Lab. Before
each test, the block I/O buffer, Page Cache, is cleaned to
guarantee that the requested data is accessed from block
devices instead of the buffer.

Table 1: The Configuration of Single Node Testbed
Make& Model Dell XPS 8700
CPU Intel i7 Processor, 64 bit, 18 MB L2, 2.8

GHz, 4 cores
RAM 8 × 2 GB
Internal HD 1x Western Digital SATA 7200rpm 2 TB
Internal SSD Intel SRT SSD 32 GB
Local File System EXT3
Operating System CentOS 6 64-bit, kernel 2.6.32 504.8.1.el6

 0

 0.2

 0.4

 0.6

 0.8

 1

1VN_16KB

1VN_16M
B

2VN_16KB

2VN_16M
B

4VN_16KB

4VN_16M
B

8VN_16KB

8VN_16M
B

R
e
a
d
 B

a
n
d
w

id
th

N

o
rm

a
liz

e
d

 t
o
 P

h
y
si

ca
l
C

a
se

Numble of VNodes and Object Size

 0

 0.2

 0.4

 0.6

 0.8

 1

1VN_16KB

1VN_16M
B

2VN_16KB

2VN_16M
B

4VN_16KB

4VN_16M
B

8VN_16KB

8VN_16M
B

W
ri

te
 B

a
n
d
w

id
th

 N
o
rm

a
liz

e
d

 t
o
 P

h
y
si

ca
l
C

a
se

Numble of VNodes and Object Size

Read Overhead Write Overhead

Figure 2: The read and write overhead evaluation:
The x-axis represents the number (1, 2, 4, 8) of the
benchmark processes running in physical nodes or
VNodes, as well as object size (16 KB, 16 MB). The
y-axis is the aggregate I/O bandwidth normalized
to physical case.

4.1 Read and Write Overhead in VNode
In the experiment, we run MPI-IO benchmark instances

on the single node testbed with and without affiliation to
VNodes. Both testcases spawn the same number of concur-
rent processes (1, 2, 4, and 8), each of which writes or reads
2 GB of data to the hard disk with medium and large object
sizes (16 KB and 16 MB)(N-to-N write). In Vnode testcase,
each process is affilated to a Vnode. In Figure 2, we can see
that the write overhead VNode is less than 25%, and as the
concurrency increases to 8 processes, the overhead decreases
to 3% (object size: 16 MB) and 5% (object size: 16 KB).
The worst read overhead is less that 10%, which is lower
what we anticipated.

4.2 The Isolation Evaluation of Throttle Func-
tionality

In this test, we evaluate the isolation of throttle function-
ality by running 4 concurrent processes on 4 VNodes (one
process affiliated to one VNode). We throttle one VNode’s
disk I/O bandwidth to different thresholds. We consider iso-

 0

 20

 40

 60

 80

 100

 120

 140

Phy_16KB

Phy_16M
B

10_16KB

10_16M
B

20_16KB

20_16M
B

30_16KB

30_16M
B

40_16KB

40_16M
B

R
e
a
d
 B

a
n
d
w

id
th

 (
M

B
/s

)

Throttle Rate on Bottom VNode (MB/s) and Object Size

 0

 20

 40

 60

 80

 100

Phy_16KB

Phy_16M
B

10_16KB

10_16M
B

20_16KB

20_16M
B

30_16KB

30_16M
B

40_16KB

40_16M
B

W
ri

te
 B

a
n
d
w

id
th

 (
M

B
/s

)

Throttle Rate on Bottom VNode (MB/s) and Object Size

Read Throttle Isolation Write Throttle Isolation

Figure 3: The read and write throttle isolation eval-
uation: Each stacked bar represents 4 benchmark
processes that are performed in 4 VNodes.The x-
axis represents the throttle rate (10, 20, 30, 40
MB/s) to the first VNode, as well as object size
(16 KB, 16 MB). “Phy” represents all concurrent
processes that are run on the physical node without
VNode affiliation. The y-axis represents the aggre-
gate read/write bandwidth.

15

 0

 0.2

 0.4

 0.6

 0.8

 1

1VN_16KB

1VN_16M
B

2VN_16KB

2VN_16M
B

3VN_16KB

3VN_16M
B

4VN_16KB

4VN_16M
B

R
e
a
d
 B

a
n
d
w

id
th

 N
o
rm

a
liz

e
d

 t
o
 P

h
y
si

ca
l
C

a
se

Numble of VNodes and Object Size

 0

 0.2

 0.4

 0.6

 0.8

 1

1VN_16KB

1VN_16M
B

2VN_16KB

2VN_16M
B

3VN_16KB

3VN_16M
B

4VN_16KB

4VN_16M
B

W
ri

te
 B

a
n
d
w

id
th

 N
o
rm

a
liz

e
d

 t
o
 P

h
y
si

ca
l
C

a
se

Numble of VNodes and Object Size

Read Weight Isolation Write Weight Isolation

Figure 4: The read and write weight isolation evalu-
ation: The x-axis represents the number of VNodes
(1, 2, 3, 4) for each test case, as well as access ob-
ject size (16 KB, 16 MB). For different numbers of
VNodes, the weight distributions are (1:100%), (2:
50%, 50%), (3: 50%, 25%, 25%), (4: 40%, 20%, 20%,
20%). The y-axis is the bandwidth of the process in
VNode normalized to the aggregate bandwidth of
the physical testcase.

lation to be the amount of mutual interference among the
peer VNodes. The results, as shown in Figure 3, show that
on the hard disk, throttle effects could be largely influenced
by other concurrent processes that are not being throttled.
This is due to the fact that throttled processes are not iso-
lated from other processes, they are only limited to the as-
signed bandwidth but not guaranteed to be assigned that
bandwidth.

We can further explain the isolation of throttle more from
the kernel level. The throttle module places a method,
cgroup io throttle, at the point where every I/O request is
initiated. This method is used to determine whether the
I/O request submitted by a process is accepted or delayed
by the I/O controller. In each time slot, the I/O controller
can accept at most B bytes (B = Throttlerate∗time) of I/O
requests for each VNode. If the I/O quota for the current
time slice is used, the cgroup io throttle will simply cause the
submitted process to sleep in order to slow down the I/O.
The advantage of the throttle module is its simplicity. On
the down side, operating at the I/O request creation level
implies that throttle I/O may also interfere with the I/O pri-
ority policies implemented at the I/O scheduler level. For
example, if a block device is set to adopt CFQ as the I/O
scheduler, the I/O requests from the VNode’s processes are
first throttled by the cgroup io throttle(), and then will wait
to be scheduled with the other I/O requests by the CFQ
scheduler. Because of this, in the throttle isolation test, the
process in each VNode is influenced by the processes in the
other VNodes (throttle rate is 40 MB/sec but the process in
VNode is only assigned 20.7 MB/sec).

4.3 The Isolation Evaluation of Weight Func-
tionality

In this experiment, we evaluate the performance of weight
functionality by running 4 concurrent processes on 4 VN-
odes (one process affiliated to one VNode). Each process
reads/writes 2 GB of data from a file (N-to-N) and each
VNode is set at different weights. The comparison physi-
cal testcase is running 4 concurrent processes on the sinle
node testbed without VNode affiliation. The bandwidth of
each process in VNode testcase is normalized to the aggre-
gate bandwidth of the physical testcase. In Figure 4, the
results show that this CFQ-based weight functionality is as
accurate as the kernel file specifies and the overhead of the
weight function is less that 8%. As opposed to the throt-

tle function, the weight module does not suffer from mutual
interference and can provide effective isolation.

At the kernel level, the weight module of OS-level virtual-
ization is implemented within the CFQ scheduler. In tradi-
tional CFQ, each process maintains a CFQ Queue (CFQQ)
to store the waiting I/O requests and allocates time slots
to access the block device for each of the queues. On the
contrary, the weight module creates a CFQ Queue Group
(CFQQG) for each VNode. The length of the time slot for
each CFQQG is determined by the weight rate configured in
each VNode. As a result, the weight functionality will not
suffer the same isolation problem as the throttle functional-
ity.

5. EVALUATION EXPERIMENTS ON DIS-
TRIBUTED AND PARALLEL FILE SYS-
TEMS

In Section 3, we proposed an I/O Middleware to enable
D/PFS I/O resources to be shared with multiple users via
OS-level virtualization. In this section, we evaluate the per-
formance of our I/O Middleware on D/PFSs. All of the
following experiments are conducted on PRObE’s Marmot
Cluster [13], where we reserve 17 nodes. For the tests on
HDFS, one node is configured as the master node, the other
16 nodes are configured as storage nodes. We run bench-
mark instances and real HPC applications on these 16 stor-
age nodes. To test Lustre, one node is configured as the
master node, 8 nodes are configured as storage nodes and
the other 8 nodes are client nodes, used to run the bench-
mark application. Before each test, every storage node’s
buffer area, Page Cache, is cleaned to guarantee that the
requested data is read from block devices.

5.1 Evaluating I/O Middleware on HDFS and
Lustre

In this experiment, each storage node is configured with a
VNode, which contains the D/PFS instance (HDFS or Lus-
tre). The I/O Middleware is deployed on the storage nodes
and the client nodes of HDFS and Lustre to apply users’
block I/O throttle rates to the VNodes. HDFS is configured
normally with 3-way replication and the size of a chunk file is
set to 64 MB. When reading data from HDFS, the MPI-IO
Test benchmark spawns 16 processes on 16 storage nodes
(one process per node). The process will attempt to read
from a local disk if the chunk file exists locally. This is re-
ferred to as With Data Co-locality. If the required chunk
file is not on the local disk, the client will randomly read
data from the remote storage node that stores the chunk
file, referred to as Without Data Co-locality. For the tests
on Lustre, the MPI-IO Test benchmark spawns 8 processes
on 8 client nodes, each of which hosts 1 process. Each pro-
cess reads a 2 GB file from Lustre. In the cluster bar chart
(Figure 5), the first red bar represents the result of the test
With Data Co-locality ; the second green bar is the test With-
out Data Co-locality ; the third blue bar is the N-to-N access
test on Lustre and the forth pink bar represents the N-to-1
access on Lustre. The x-axis represents the block I/O throt-
tle rates on the VNodes that host the D/PFS instance and
the benchmark processes. “W/O VN”represents the D/PFS
instances that are run on the physical machine without VN-
ode affiliation. From the bar charts, we can see that our
I/O Middleware can effectively control the aggregate band-

16

 0

 200

 400

 600

 800

 1000

 1200

W
/O_VN

10 M
B/s

20 M
B/s

40 M
B/s

80 M
B/s

160 M
B/s

 0

 20

 40

 60

 80

 100

 120

 140

A
g

g
re

g
a
te

 R
e
a
d

 B
a
n
d

w
id

th
 (

M
B

/s
)

A
g

g
re

g
a
te

 R
e
a
d

 B
a
n
d

w
id

th
 (

M
B

/s
)

 f
o
r

Lu
st

re
 N

-t
o
-1

Throttle Rate to DFS Block I/O

HDFS with Data Locality
HDFS W/O Data Locality

Lustre N-to-N
Lustre N-to-1

Figure 5: Evaluate I/O Middleware: MPI-IO bench-
mark runs on HDFS (16 storage nodes and 16 client
processes) and Lustre (8 storage nodes and 8 client
processes). The x-axis represents the throttle rate
on each storage node via I/O Middleware. The
left y-axis represents the aggregate bandwidth. The
right y-axis represents the aggregate bandwidth of
Lustre N-to-1 read.

width of D/PFSs and introduces negligible overhead. This
is due to the fact that a D/PFS’s network and communica-
tion latency also introduces certain amounts of performance
overheads. On the contrary, the overhead introduced by
VNode’s block I/O control accounts for a small fraction of
the overall overhead.

5.2 Evaluating I/O Middleware via Real Ap-
plications

In this evaluation, we suppose that there are multiple
users running multiple I/O intensive jobs on the same D/PFS
(HDFS as an example in this case), one of the jobs, such as
ParaView, has a high priority. ParaView is an MPI-based
interactive HPC visualization tool. Users desire low-latency
response once a visualization request is sent to ParaView’s
render server. The render server loads data from the D/PFS
and then renders and outputs the results into a file. In this
test, each of the 16 storage nodes are configured with two
VNodes. One VNode contains a ParaView process, and the
other VNode hosts two background daemons that read data
from HDFS. In such settings, we attempt to use the I/O
Middleware to throttle the background daemons so as to
guarantee that the high priority job (ParaView) will run
first. In Figure 6, we plot the finish times of ParaView
while increasing the throttle rate to background daemons
via the I/O Middleware. The x-axis represents throttle rates
to background daemons. “W/O DM” in the x-axis repre-
sents the case of running ParaView exclusively without any
background daemons. “W/O THTL” represents the case of
running ParaView and background daemons without throt-
tling the block I/O of daemons. When we set the block I/O
rate of the background daemons to 5 MB/s, ParaView’s fin-
ish time is close to the finish time of the “W/O DM” case.
As the throttle rate to background daemons increasing, the
finish time of ParaView is also increasing (up to 140% of the
“W/O DM” case).

6. RELATED WORK
Using virtualization technology to consolidate and share

the cluster resources to multiple users is becoming more pop-
ular in both the HPC and BigData communities. ACIC [17],
proposed by Liu, is an automatic I/O configurator for opti-

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

W
/O_DM

W
/O_THTL

5 M
B/s

10 M
B/s

20 M
B/s

40 M
B/s

60 M
B/s

80 M
B/s

100 M
B/s

Fi
n
is

h
 T

im
e
 (

m
s)

 o
f

P
a
ra

V
ie

w

Throttle Rate to Competing Daemons' I/O

Data Load Time of ParaView (ms)
Computing Time of Paraview (ms)

Figure 6: Evaluate I/O Middleware via Real Ap-
plications: PareView instance and two background
daemons retrieve data from HDFS simultaneously.
PareView competes with the daemons for the shared
HDFS’s I/O. The x-axis represents the I/O band-
width throttled on the daemons. The y-axis repre-
sents the finish time of ParaView.

mizing HPC applications’ I/O on the cloud platform. Niu [18]
proposed a computing model for dynamically reserving and
resizing resources on the cloud environment to minimize
costs.

In addition, many researchers in different research do-
mains have performed a series of investigations on OS-level
virtualization from evaluations to applications. Authors [15,
20, 22], have evaluated the overhead (CPU, memory and
disk) of OS-level virtualization compared with the tradi-
tional hypervisor based VM. The results show that OS-
level virtualization outperforms hypervisor largely on mem-
ory and disk throughputs. However, the authors do not
completely evaluate the overhead and isolation of the block
I/O control. Multilanes [16] is a virtual storage system for
OS-level virtualization. It builds an isolated I/O stack for
each virtual node to eliminate contentions on shared kernel
data structures and locks, which are the performance bot-
tlenecks, while applying OS-level virtualization to fast block
devices (e.g. SSD). There are some researchers in UC Berke-
ley who proposed and implemented a platform, Mesos [14],
for sharing commodity clusters with multiple users and mul-
tiple computing platforms such as Hadoop and MPI. Mesos
takes advantage of OS-level virtualization (LXC) to provide
cluster resource sharing (only CPU and memory) in a fine-
grained manner. However, it does not provide any mecha-
nism to share a cluster’s block device resources with users
and computing platforms.

7. CONCLUSION
In this paper, we investigate the overhead and isolation

performance of OS-level virtualization’s block I/O control
on a single node and D/PFS. In most cases, the block I/O
control of OS-level virtualization introduces less than 10%
overhead. The weight functionality, which is implemented
at CFQ, introduces at most 8% overhead and shows good
performance isolation. The throttle functionality of block
I/O control also introduces low performance overhead but
has limited performance on isolation and its result will be
largely influenced by peer processes. In addition, throttle
functionality is used to implement the I/O Middleware to
share the I/O bandwidth of D/PFSs to multiple users based
on their priorities. It performs effectively with negligible
overhead on D/PFSs and real applications.

17

8. ACKNOWLEDGEMENTS
This work is supported in part by the US National Science

Foundation Grant CCF-1527249, CCF-1337244 and National
Science Foundation Early Career Award 0953946. This ma-
terial is based upon work supported by the U.S. Department
of Energy, Office of Science, Office of Advanced Scientific
Computing Research.

The experiments of this work are conducted at the PRObE
Marmot cluster, which is supported by the National Sci-
ence Foundation under the following NSF program: Paral-
lel Reconfigurable Observational Environment for Data In-
tensive Super-Computing and High Performance Computing
(PRObE).

9. REFERENCES
[1] Docker, https://www.docker.com/.

[2] KVM. http://www.linux-kvm.org/page/Main_Page.

[3] Linux container, https://linuxcontainers.org/.

[4] Lustre filesystem. http://www.lustre.org/.

[5] MPI-IO Test.
http://institute.lanl.gov/data/software/.

[6] Openvz, http://www.openvz.org.

[7] Paraview, http://www.paraview.org/.

[8] TORQUE Resource Manager
http://www.adaptivecomputing.com/products/

open-source/torque/.

[9] Vmware, http://www.vmware.com/.

[10] Xen, http://www.xenproject.org.

[11] Dhruba Borthaku. The Hadoop Distributed File
System: Architecture and Design.

[12] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), 2004.

[13] Garth Gibson, Gary Grider, Andree Jacobson, and
Wyatt Lloyd. Probe: A thousand-node experimental
cluster for computer systems research. USENIX; login,
38(3), 2013.

[14] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott
Shenker, and Ion Stoica. Mesos: a platform for
fine-grained resource sharing in the data center. In
Proceedings of the 8th USENIX conference on
Networked systems design and implementation,
NSDI’11, pages 22–22, Berkeley, CA, USA, 2011.
USENIX Association.

[15] Nikolaus Huber, Marcel von Quast, Michael Hauck,
and Samuel Kounev. Evaluating and modeling
virtualization performance overhead for cloud
environments. In CLOSER, pages 563–573, 2011.

[16] Junbin Kang, Benlong Zhang, Tianyu Wo, Chunming
Hu, and Jinpeng Huai. Multilanes: providing
virtualized storage for os-level virtualization on many
cores. In FAST, pages 317–329, 2014.

[17] Mingliang Liu, Ye Jin, Jidong Zhai, Yan Zhai,
Qianqian Shi, Xiaosong Ma, and Wenguang Chen.
Acic: automatic cloud i/o configurator for hpc
applications. In High Performance Computing,
Networking, Storage and Analysis (SC), 2013
International Conference for, pages 1–12. IEEE, 2013.

[18] Shuangcheng Niu, Jidong Zhai, Xiaosong Ma,

Xiongchao Tang, and Wenguang Chen. Cost-effective
cloud hpc resource provisioning by building
semi-elastic virtual clusters. In High Performance
Computing, Networking, Storage and Analysis (SC),
2013 International Conference for, pages 1–12. IEEE,
2013.

[19] Jongse Park, Daewoo Lee, Bokyeong Kim, Jaehyuk
Huh, and Seungryoul Maeng. Locality-aware dynamic
vm reconfiguration on mapreduce clouds. In
Proceedings of the 21st international symposium on
High-Performance Parallel and Distributed
Computing, pages 27–36. ACM, 2012.

[20] Stephen Soltesz, Herbert Pötzl, Marc E Fiuczynski,
Andy Bavier, and Larry Peterson. Container-based
operating system virtualization: a scalable,
high-performance alternative to hypervisors. In ACM
SIGOPS Operating Systems Review, volume 41, pages
275–287. ACM, 2007.

[21] Tom White. Hadoop: The Definitive Guide. O’Reilly
Media, original edition, June 2009, ISBN: 0596521979.

[22] Miguel G Xavier, Marcelo Veiga Neves, Fabio D Rossi,
Tiago C Ferreto, Timoteo Lange, and Cesar AF
De Rose. Performance evaluation of container-based
virtualization for high performance computing
environments. In Parallel, Distributed and
Network-Based Processing (PDP), 2013 21st
Euromicro International Conference on, pages
233–240. IEEE, 2013.

18

