
Achieving up to Zero Communication Delay in
BSP-based Graph Processing via Vertex

Categorization

Xuhong Zhang
EECS, University of Central Florida

Orlando, Florida 32826
Email: xzhang@eecs.ucf.edu

Ruijun Wang
EECS, University of Central Florida

Orlando, Florida 32826
Email: ruijun@eecs.ucf.edu

Jun Wang
EECS, University of Central Florida

Orlando, Florida 32826
Email: jwang@eecs.ucf.edu

Abstract—Graph is widely used to model structural relation-
ships among objects. For example, Web graph, social networks,
knowledge bases and protein interactions are all modeled with
graph. Facebook’s social graph has scaled to trillions edges. The
ever-increasing size of these real-world graph data are making
analytics on them extremely challenging. Traditional MapReduce
framework is not efficient at graph processing due to the special
features of graph structures and algorithms. To better utilize
these features, Google proposes Pregel. Pregel’s model is very
popular and leads to the emergence of many current widely used
graph processing frameworks such as Apache Hama, Apache
Giraph, GPS, GraphLab, and Mizan. All these Pregel-like system
are implemented based the Bulk Synchronous Parallel (BSP)
model. Graph algorithm is divided into supersteps, within each
superstep, each vertex runs the same compute function concur-
rently. This function will first do computation to update vertex
value, then asynchronously send messages to neighbor vertices.
Vertices of graph are usually divide into partitions across a cluster
of machines. From a higher perspective, one superstep on a
machine can be viewed as two overlapping phase of computation
and communication. To coordinate the parallel execution, each
machine will finally proceed to an universal barrier and then
wait for the completion of other machines. After all machines
reach the barrier, a new superstep is started. This synchronization
implementation is simple enough, but the barrier is too coarse
grained. As observed, once a machine finishes computation
phase of a superstep, it will do no computation other than
communication till the start of next superstep. Here, we regard
this time frame as communication delay. This communications
delay dominates a superstep. Figure 1 shows the time break
down of multiple supersteps in running PageRank on Twitter
graph (41.7 million vertices, 1.47 billion edges).

0

500

1000

1 2 3 4 5 6 7 8

T
im

e
(s

)

Supersteps

Computation Communication Delay

Fig. 1. Communication delay in supersteps when running PageRank on
Twitter graph

This communication delay causes serve resource under-
utilization. So we investigate whether computation can be sched-

uled during this communications delay by relaxing the BSP
synchronization model. Two most important synchronization
properties are maintained by the BSP graph processing,

• Consistency: At the beginning of each superstep, a
vertex’s computing function can be triggered if and only
if all its incoming messages from neighbors have been
received.

• Isolation: Within the same superstep, newly generated
messages from any vertex will not be seen by any other
vertex.

We observe that a large portion of vertices in a graph satisfy the
consistency property right after finishing computation without
synchronizing at the barrier, simply because these vertices’
incoming neighbors all reside on the same partition. The incoming
messages of these vertices are instantly available in memory right
after its belong partition finishes computation. While keeping
the isolation property, the next superstep on these vertices can
be directly started without synchronizing at the costly barrier.
Thus some computation can be scheduled during communications
delay in current superstep. In this paper, we categorize these
vertices as local vertices and others as remote vertices. Figure 2
shows the percentage of local vertices when partitioning the
soc-LiveJournal (4.8 million vertices, 68 million edges) data
set into different partitions using Metis. Even 256 partitions
still yield more than 50% local vertex. So a large portion of

0%

50%

100%

8 16 32 64 128 256

Num of Partitions

local vertex remote vertex

Fig. 2. Local vertex percentage. Local vertex is vertex with all its incomming
neighbors residing on the same partition

computation in the next superstep can be scheduled during
the communication delay in current superstep. Through this
overlapping of computation and communication, our solution can
dramatically mitigate the communications delay caused by BSP
synchronization. Our proposed solution could totally mitigate the
communication delay when it’s less than computation time in a
superstep multiply local vertex’s percentage


