
Opass: Analysis and Optimization of Parallel Data Access on Distributed File

Systems

Jiangling Yin, Jun Wang, Dan Huang, Tyler Lukasiewicz, and Jian Zhou

Department of Electrical Engineering and Computer Science

University of Central Florida, Orlando, FL

{jyin, dhuang, jwang}@eecs.ucf.edu

Conventionally, in parallel data analysis, multiple pro-

cesses running on different cluster nodes share a separate

dedicated storage system. Once a data processing task is

scheduled to a process, the data will be transferred from

the shared storage to the process. However, in today’s

big data era, large amounts of data movement over the

shared network could incur an extra overhead during parallel

execution, especially during iterative data analysis, which

involves moving data from storage to processes repeatedly.

Distributed file systems, such as GFS, HDFS, QFS or

Ceph, could be directly deployed on the disks of cluster

nodes to reduce data movement. When storing a data set,

distributed file systems will usually divide the data into

smaller chunk files and randomly distribute them with several

identical copies (for the sake of reliability). When retrieving

data from HDFS, a client process will first attempt to read

the data from the disk that it is running on. If the required

data is not on the local disk, the process will then read from

another node that contains the required data. In this paper,

the data read requests from the parallel processes are referred

as parallel data requests.

Unfortunately, most parallel data requests will be served

remotely due to the lack of consideration of data distribution

in HDFS and the task assignment among parallel processes.

These remote data requests can cause a serious imbalance of

data access on the cluster nodes. Because of this, the overall

execution time will be prolonged due to the synchronization

requirements in parallel execution. In reality, the I/O perfor-

mance could be further degraded as the size of the cluster

and the data increase.

In this paper, we propose novel matching-based algo-

rithms for optimizing parallel read access. Our goal is to

reduce remote data accesses on HDFS for parallel data anal-

ysis and thus achieve a higher balance of data read requests

between cluster nodes. To achieve this goal, we retrieve the

data layout information from the underlying distributed file

system and model the assignment of processes to data as

a one-to-many matching in a Bipartite Matching Graph.

We then use the matching-based algorithms to compute a

solution that enables parallel data access to be served on

HDFS in a local and balanced fashion.

To verify our method, we run MPI parallel processes on

Marmot to read a dataset from HDFS via two methods. The

first method, in which the data assignment of each process

is mainly decided by its process rank. The second method

is our proposed method: Opass. We plot the I/O time taken

to read every chunk on a 64-node cluster, which contains

640 chunks and the size of each chunk is approximately

64 MB. The execution results are shown in Figure 1. The

figure shows that without the use of Opass, the I/O time

increases dramatically after the initiation of the execution.

In contrast, with the use of Opass, the I/O time during the

entire execution is approximately one to two seconds.

0 

4 

8 

12 

16 

1 51 101 151 201 251 301 351 401 451 501 551 601 

I/O time (seconds) 

With Opass 

Without Opass 

I/O opearation number 

Figure 1: I/O times comparison on Parallel Access.

we also plot the amount of data served by each node on

a 64 node cluster in Figure 2. We find that the amount of

data served per node varies greatly without the use of Opass.

Some nodes, such as node-44, serve more than 1400 MB of

data while some node serves 64 MB. Such an imbalance

will cause the disk head to become a bottleneck, and thus

the I/O read time could increase, as shown in Figure 1. In

contrast, with the use of Opass, every storage node serves

approximately 640 MB.

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Size of data served (MB) by each node
Without Opass With Opass

Node number

Figure 2: Access patterns comparison on Parallel Access.


