
ifarm: Implementing Inline Deduplication to
a Distributed File System

Ryo Matsumiya∗, Shin Sasaki∗, Kazushi Takahashi∗‡, and Yoshihiro Oyama∗‡
∗The University of Electro-Communications

‡JST, CREST

In the field of HPC, storage systems have been designed
with a hierarchy of storage devices. Some clusters that adopt
a distributed file system such as Gfarm [1] save data to and
load data from huge storage, such as tape devices, according to
circumtances. Computation nodes read data from a distributed
file system during their computation. Computation results are
stored to a distributed file system, which usually consist of
multiple I/O servers.

We consider the case in which the computation nodes read
and write too large data to store to disk spaces provided by
the distributed file system. In this case, the distributed file
system must load (store) from (into) the huge storage multiple
times, and these operations can cause overheads on file access
performance. Therefore, it is required to reduce the amount of
data stored in I/O servers and decreases data transfer operations
between a distributed file system and huge storage.

A widely used approach to reduce disk space consumption
is deduplication. Deduplication systems enable to store only
one physical copy of duplicate data when duplicate data exist
among different files or within a single file. Deduplication
systems were implemented to many storage systems. Meister
et al. measured the effect of deduplication to reduce data of
HPC applications managed by practical storage [2]. However,
Meister et al. did not implement any deduplication system
working with actual file systems.

We are developing ifarm, which is an implementation of
Gfarm with deduplication of file data. Gfarm is a distributed
file system used in the field of HPC. Gfarm builds distributed
file systems by a single metadata server and multiple I/O
server(s). The metadata server stores the metadata of Gfarm
files, including the list of I/O server(s) that each file is placed
on. I/O servers are stored the contents of files.

There are two methods to introduce deduplication to a
file system. One is the offline method. The offline method
performs deduplication while no client is accessing the storage.
The other method is the inline method, in which clients can
access the storage during deduplication. As we described
above, we consider the case in which computation nodes read
and write too large data to store to a distributed file system.
The offline method is not advantageous in this case since
computation nodes running HPC applications must continue
to access files even while deduplication is performed. Hence,
this work focuses on the inline method.

Some deduplication systems adopt content defined chunk-
ing (CDC), which is a deduplication method that divides a file
into variable-size chunks based on their content. ifarm also
adopts CDC. Although CDC enables to use storage efficiently,
CDC takes a long time to divide large files because it calculates
many fingerprints of file data. Fast execution of CDC is
required to achieve practical inline deduplication. Although

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'!!"

'#!"

!" #!!" $!!!" $#!!" %!!!"

(
)
*+
,
-
)
.
,
/"
01

2
34
5!

6789"47:9"0125!

";<=*>" "7<=*>"

Fig. 1. Result of reading zero-data files

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'%!"

!" (!!" '!!!" '(!!" #!!!"

)
*
+,
-
.
*
/
-
0"
12

3
45
6!

789:"58;:"1236!

"<=>+?" "8=>+?"

Fig. 2. Result of reading random-data files

many researchers attempted to parallelizing chunking opera-
tions, their methods do not address a problem of overheads
proportional to sizes of divided files. Therefore, the overheads
incurred in chunking large data are not sufficiently small. To
hide this overhead, ifarm calculates the fingerprints of file data
asynchronously with operations for handling requests from
clients.

We evaluated ifarm through two programs. One program
sequentially reads a zero-data file, which indicates a workload
to which ifarm shows the best performance. The other pro-
gram sequentially reads a random-data file which indicates
a workload to which ifarm shows the worst performance.
Compared with original Gfarm, ifarm was 117% faster in the
best case (Fig. 1), and 99.8% slower in the worst case (Fig.
2). In the future, we must improve the performance of ifarm,
particularly the one in the worst case. We will also conduct
more benchmarks to analyze the performance of ifarm.

REFERENCES

[1] Osamu Tatebe, Kohei Hiraga and Noriyuki Soda, “Gfarm grid file
system,” no., 3, 2010.

[2] Dirk Meister, Jügen Kaiser, Andre Brinkmann, Toni Cortes, Michael
Kuhn and Julian Kunkel, “A Study on Data Deduplication in HPC Storage
Systems,” in the Proc. of IEEE/ACM SC ’12, 2012.


