
Recent Progress in Tuning Performance of
Large-scale I/O with Parallel HDF5

M. Scot Breitenfeld†, Kalyana Chadalavada‡, Robert Sisneros‡, Surendra Byna∗,
Quincey Koziol†, Neil Fortner†, Prabhat∗, and Venkat Vishwanath§

∗Lawrence Berkeley National Laboratory, USA. Email: {sbyna,prabhat}@lbl.gov
†The HDF Group. Email: {brtnfld,koziol,nfortne2}@hdfgroup.org

‡National Center for Supercomputing Applications, USA. Email: {kalyan,sisneros}@illinois.edu
§Argonne National Laboratory. Email: venkat@anl.gov

Large-scale scientific simulations running on hundreds of
thousands of cores produce massive amounts of data that
often needs to be stored in files. Analysis applications run on
thousands of cores to access data files in order to extract useful
information. Both, simulation and analysis codes, require high-
level I/O libraries that offer superior data access performance
for writing and reading data to/from parallel file systems. In
this work-in-progress talk, we will present our recent work
in tuning HDF5 parallel I/O library [6] that achieved 2-10×
performance improvement over default configurations.

HDF5 is a versatile data model that can represent a number
of complex data objects and a wide variety of metadata.
HDF5 provides a software library that can run on a variety of
computing systems ranging from laptops to massively parallel
systems. The HDF5 file format is portable and comes with a
high-level application programming interface for several high-
level programming languages. Parallel I/O is a special feature
of the HDF5 library that offers various I/O optimizations
for parallel computers. HDF5 implements parallel I/O by ex-
ploiting features of MPI, including collective communication
and I/O, along with internal algorithmic optimizations that
enable high-performance application I/O. When an application
requests a collective I/O operation, HDF5 generates two MPI
datatypes, one that describes the application memory region
and another that describes the region in the HDF5 file to
access. The versatility and flexibility of the HDF5 library at-
tracted numerous applications in reading and writing scientific
data.

While HDF5 offers various optimizations and features,
choosing the right combinations is necessary to obtain good
I/O performance. In our recent work, we tuned two appli-
cations on different parallel systems: MOAB [1] on Mira at
Argonne National Lab (ANL) and VPIC [3] on Blue Waters at
the National Center for Supercomputing Applications (NCSA).
Since HDF5 optimizations vary based on the underlying paral-
lel file system and the data access patterns of applications, our
study uses distinct optimization strategies for each application.

MOAB (Mesh-Oriented datABase, [1], [5] is a software
package for representing and evaluating mesh data. MOAB’s
file format for storing the mesh data structure uses HDF5 [2].
In this work, we studied the performance of a MOAB appli-

cation, where each process reads data at different coordinates.
It is challenging to obtain good performance when the locality
of the data accesses is low. To counter this, we developed an
improved hyperslab selection algorithm in HDF5 that merges
multiple non-contiguous hyperslabs into one large hyperslam.
This feature reduced the number of read calls by a MOAB
application and achieved 10X performance over the original
implementation.

Vector Particle-in-Cell (VPIC) is a highly optimized code
for simulating plasma physics phenomenon. In this work,
we have used the VPIC-IO kernel, that mimics the data
fields of a magnetic reconnection simulation [4]. The number
of particles written by the kernel scales as the number of
processes increase. As the number of processes grow to
hundreds of thousands, writing to the same file can be become
a performance bottleneck. We studied the scalability of VPIC-
IO kernel running on ≈300,000 MPI processes and writing up
to 10 trillion particles that amounts to ≈290 TB shared file.
We will show that proper distribution of write load among
processes and among I/O servers achieve 2× better perfor-
mance than default configuration. This amounts to ≈53% of
the available I/O rate using 160 Lustre Object Storage Targets
(OSTs) of the Blue Waters system. We will also present testing
a new feature of HDF5, called multi-dataset writes, where
multiple HDF5 datasets can be written to the file without a
collective call between each dataset write operation. We are
exploring further optimizations such as Lustre wide striping
support to maintain the compute node to OST ratio reasonably.

REFERENCES

[1] MOAB:Mesh-Oriented datABas. https://bitbucket.org/fathomteam/moab.
[2] Parallel Reading of an H5M File. http://trac.mcs.anl.gov/projects/ITAPS/

wiki/MOAB/H5Mnotes.
[3] K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, and T. J. T. Kwan. Ul-

trahigh performance three-dimensional electromagnetic relativistic kinetic
plasma simulation. Physics of Plasmas, 15(5):7, 2008.

[4] S. Byna, A. Uselton, Prabhat, D. Knaak, and H. He. Trillion Particles,
120,000 cores, and 350 TBs: Lessons Learned from a Hero I/O Run on
Hopper. In Proceedings of 2013 Cray User Group, May 2013.

[5] T. J. Tautges, R. Meyers, K. Merkley, C. Stimpson, and C. Ernst.
MOAB: a mesh-oriented database. SAND2004-1592, Sandia National
Laboratories, Apr. 2004. Report.

[6] The HDF Group. HDF5 user guide. http://hdf.ncsa.uiuc.edu/HDF5/doc/
H5.user.html, 2010.


