

FROM HPC TO CLOUD ... AND BACK AGAIN?

SAGE WEIL - PDSW 2014.11.16

AGENDA

- A bit of history and architecture
 - Technology
 - Community
- Challenges
- Looking forward

CEPH

SOME HISTORY

...AND ARCHITECTURE

ORIGINS

- Petascale object storage
 - DOE: LANL, LLNL, Sandia
 - Scalability, reliability, performance
- Scalable metadata management
- First line of Ceph code
 - Summer internship at LLNL

MOTIVATING PRINCIPLES

- "Intelligent" everything
 - Smart disks
 - Smart MDS
 - Dynamic load balancing
- Design tenets
 - All components must scale horizontally
 - There can be no single point of failure
 - Self-manage whenever possible
- Open source
 - The solution must be hardware agnostic

CLIENT / SERVER

"clients stripe data across reliable things"

CLIENT / CLUSTER

"client stripe across unreliable things" "servers coordinate replication, recovery"

RADOS CLUSTER

RADOS CLUSTER

MANY OSDS PER HOST

WHERE DO OBJECTS LIVE?

A METADATA SERVER?

13

CALCULATED PLACEMENT

location = f(object name, cluster state, policy)

LIBRADOS

CRUSH

CRUSH IS A QUICK CALCULATION

CRUSH AVOIDS FAILED DEVICES

DECLUSTERED PLACEMENT

- OSDs store many PGs
- PGs that map to the same OSD generally have replicas that do not
 - No spares
 - Highly parallel recovery
- Recovery is loosely coordinated
 - Monitors publish new CRUSH map
 - "OSD.123 is now down"
 - OSDs migrate data cooperatively
 - With strong client consistency

FILE SYSTEM

three metadata servers

??

DYNAMIC SUBTREE PARTITIONING

WHAT CLIENT PROTOCOL?

- Prototype client was FUSE-based
 - Slow, some cache consistency limitations
- Considered [p]NFS
 - Abandon ad hoc client/MDS protocol and use a standard?
 - Avoid writing kernel client code?
- pNFS would abandon most of the MDS value
 - Dynamic/adaptive balancing, hot spot mitigation, strong fine-grained coherent caching
- Built native Linux kernel client
 - Upstream in ~2.6.36

FOSS >> OPEN STANDARDS

- Open source client *and* server
- Unencumbered integration
 - Linux, Qemu/KVM
- No need to adopt standard legacy protocols
 - iSCSI, NFS, CIFS are client/server
- Lesson:
 - standards critical for proprietary products
 - offer no value to end-to-end open solutions
- Intelligent OSDs can do more than read/write blocks
 - What else should they do?

INCUBATION (2007-2011)

- Skunkworks project at DreamHost
 - Native Linux kernel client (2007-)
 - Per-directory snapshots (2008)
 - Recursive accounting (2008)
 - librados (2009)
 - radosgw (2009)
 - Object classes (2009)
 - strong authentication (2009)
 - RBD: rados block device (2010)

LINUX KERNEL SUPPORT

- Began attending LSF (Linux Storage and File systems) workshops
- Hear stories about early attempts to upstream Lustre
- Engage community with their processes
- Eventually merged into mainline in 2.6.34

RBD KERNEL MODULE

THE RADOS GATEWAY

RADOS OBJECTS

- Flat object namespace within logical pools
- Rich data model for each "object"
 - Byte array
 - Attributes (small inline key/value data)
 - Bulk key/value data
- Mutable objects
 - Partial overwrite of existing data
- Single-object "transactions" (compound operations)
 - Atomic reads or updates to data and metadata
 - Atomic test-and-set, conditional updates

RADOS CLASSES

- "Objects" in the OOP sense of the word (data + code)
- RADOS provides basic "methods"
 - Read, write, setattr, delete, ...
- Plugin interface to implement new "methods"
 - Via a dynamically loaded .so
- Methods executed inside normal IO pipeline
 - Read methods can accept or return arbitrary data
 - Write methods generate an update transaction
- Moving computation is cheap; moving data is not

RADOS LUA CLASS

- Noah Watkins (UCSC)
- RADOS class links embedded LUA interpreter
- Clients can submit arbitrary script code
- Simple execution environment
 - Can call existing methods (like read, write)
- Caches compiled code

INKTANK (2012-2014)

- Spinout in 2012
 - DreamHost a poor fit to support open source software
 - Funding from DreamHost, Mark Shuttleworth
- Productize Ceph for the enterprise
 - Focus on stability, testing automation, technical debt
 - Object and block "Cloud" use-cases
- Real users, real customers

CONTRIBUTORS / MONTH

HPC?

- Lustre works
- Lustre hardware model a poor match for Ceph
 - Redundancy within expensive arrays unnecessary
 - Ceph replicates or erasure codes across devices
 - More disks, cheaper hardware
 - Ceph uses NVRAM/flash directly (not buried in array)
- ORNL experiment
 - Tune Ceph on OSTs backed by DDN array
 - Started terrible; reached 90% of theoretical peak
 - Still double-writing, IPoIB, ...
 - Inefficient HW investment

LINUX?

- Did kernel client investment engage Linux community?
 - Not really
 - Developers have small environments
- Red Hat bought Gluster Inc.
 - CephFS not stable enough for production
- Canonical / Ubuntu
 - Pulled Ceph into supported distro for librbd
 - Mark Shuttleworth invested in Inktank

THE CLOUD

- OpenStack mania
- Inktank focus on object and block interfaces
 - Start at bottom of stack and work up
 - Same interfaces needed for laaS
- Helped motivate Cinder (block provisioning service)
 - Enable support of RBD image cloning from Cinder
 - No data copying, fast VM startup
- Ceph now #1 block storage backend for OpenStack
 - More popular than LVM (local disk)
- Most Inktank customers ran OpenStack
- Lesson: find some bandwagon to draft behind

RED HAT

- Red Hat buys Inktank in April 2014
 - 45 people
 - \$190MM
- OpenStack

CHALLENGES

SUPPORTABILITY

• Distros

- Ubuntu 12.04 LTS at Inktank launch
- Dependencies
 - Leveldb suckage reasonably fast moving project, distros don't keep up
- Kernels
 - Occasionally trigger old bugs
- Rolling upgrades
 - Large testing matrix
 - Automation critical
- Lesson: not shipping hardware makes QA & support harder

USING DISK EFFICIENTLY

- OBFS: simpler data model \rightarrow faster
- Ebofs: userspace extent and btree-based object storage
 - Transaction-based interface
- Btrfs: how do expose transactions to userspace?
 - Start and end transaction ioctls
 - Pass full transaction description to kernel
 - Snapshot on every checkpoint; rollback on restart
 - Still need ceph-osd's full data journal for low latency
- XFS: stable enough for production
 - Need journal for basic atomicity and consistency
- Lesson: interfaces can tend to clean and respectable
 - ...but implementations generally do not

MAKING IT WORK AT SCALE

- Goal: manage to a steady state
 - Declare desired state of system; components move there
 - System may never be completely "clean"
- Dynamic / emergent behaviors
 - Various feedback loops in autonomic systems
 - Equilibrium may be unstable
- Lesson: importance of observability
 - Convenient state querying, summaries
- Lesson: operator intervention
 - Need ability to suspend autonomic processes

ENTERPRISE

- Ecosystem
 - Ubuntu dominated early OpenStack
 - RHEL/CentOS dominate enterprise
- Vendor needs a compelling product
 - Simple support on open code is a difficult model
 - Conundrum: better software \rightarrow reduces product value
 - Engineering expertise is necessary but not sufficient
- Inktank Ceph Enterprise
 - Management layer, GUI (proprietary add-ons)
 - Enterprise integrations (SNMP, VMWare, Hyper-V)
- Legacy
 - Back to talking about iSCSI, NFS, CIFS (as gateway drug)

COMMUNITY BUILDING

- User community
 - Huge investment in making things easy to deploy
 - Documentation
 - Hand-holding over email, IRC
- Developer community
 - Forcing tight developer team to use open processes
 - Email, IRC, public design and code review
- Ceph Developer Summits
 - 100% online Google hangout, IRC, wiki
 - Every few months
- Lessson: developers need employers; partners matter

LOOKING FORWARD

PERFORMANCE

- Have demonstrated Ceph works; now users would like it to be faster
- Polish internal APIs; replace original implementations
 - OSD backend (XFS + leveldb)
 - Message passing interface
- Modularity helpers new developers engage
- Critical mass of developer community stakeholders
 - Intel, Mellanox, Fujitsu, UnitedStack
 - Challenge is in shepherding efforts

NEW HARDWARE COMING

- Flash and NVRAM for high IOPS
 - Locking and threading \rightarrow improve parallelism
- Low-power processors for cold storage
 - Limit data copies, CRC \rightarrow reduce memory bandwidth
- Challenge: remain hardware agnostic
 - Keep interface general
- Lesson: LGPL is great for infrastructure software

ETHERNET DISKS

- Ethernet-attached HDDs
 - On-board, general purpose ARM processors
 - Standard form factor, ethernet instead of SATA
 - Eliminate usual Intel-based host tier
- Seagate Kinetic
 - New key/value interfaces to move beyond block
 - Well-suited to new shingled drives
 - Strategy: define a new "standard" interface
- HGST open ethernet drives
 - General purpose Linux host on HDD
 - Standard block interface from host
 - Strategy: build ecosystem of solutions around an open disk architecture
- Prediction
 - Hiding drive capabilities behind new APIs will limit innovation, adoption
 - Opportunity to leverage existing "software defined" platforms

MULTIPLE VENDORS

- Avoiding vendor lock-in resonates with users
- Hardware vendor independence
 - Architect system for commodity hardware
 - Customers can buy piecemeal or full solutions
- Open source \rightarrow software vendor independence
 - Code is free (as in speech and beer)
- Need credible competitors
 - Linux: Red Hat, SUSE, Canonical
 - Ceph: Red Hat, ?
- Lesson: being too successful undermines your value prop

ACADEMIA → FOSS PIPELINE

- Incredible innovation in graduate programs
- Most academic work based on open platforms
- Very little work survives post-thesis to become free or open source software
- I see three key problems
 - Lack of engagement and education about FOSS communities
 - Pool of employers are dominated by non-free software vendors
 - Gap between prototype code that is typical at thesis stage and the production quality needed for paying users or venture investors

PARTING THOUGHTS

- Ceph is awesome.
- Building a successful community around open source technology is just as challenging as the technology.
- Successful business model (and business environment) is a huge catalyst to driving community.
- Sacrificing software freedoms to enable the business opportunity is frequently tempting, but unnecessary.

THANK YOU!

Sage Weil CEPH PRINCIPAL ARCHITECT

sage@redhat.com

