
VSFS: A SEARCHABLE DISTRIBUTED
FILE SYSTEM

Lei Xu, Ziling Huang, Hong Jiang, Lei Tian, David
Swanson

Introduction

Introduction
3

¨ File systems have been widely used as HPC
storage infrastructures
¤ Substitutes for databases
¤ Better scalability

n Larger volume
n Higher parallel I/O performance

¤ Flexibility
n No fixed data schemas
n Support structured and unstructured data

Background
4

¨  Original file system concepts are aged
¤ Were proposed in 1970s

n Assumption: Single CPU, Small RAM, Small working set,
Simple computing model, etc.

¤ The assumption does not hold true now
n Multicore processor
n  Large amount of RAM
n  Large working set
n Complex computing model

Big Data Characteristics
5

¨  Velocity and Variety
¤ Database is insufficient

n Fixed schema and low throughput
n Not suitable for scientific dataset

¤ Large-scale distributed file systems are the standard
solutions today (Hadoop, Ceph, Lustre, Panasas)

¨  Volume → Management Challenge
¤ Difficult to efficiently manage and organize enormous

number (e.g., 109) of files for various applications with
different access patterns.

File System Namespace
6

¨  File system namespace becomes complex and
inefficient for managing large datasets
¤ Root cause: file path is the only identity of data

n Must be descriptive
n Difficult to be distinguishable for billions of files

n Difficult to locate target file from billions of files

¤ Hierarchical namespace does not work well
with a huge amount of files.

File Search – Data Filtering
7

¨  Addressing data management dilemma
¤ Locate (search) files by “attributes” instead of “path”
¤ Support high variety
¤ Support large volume
¤ Speed up big data computing

n Enable new computing flow

Today’s Computing Flow
8

¨  Program A (producer) writes data into files, with a
limited number of attributes embedded into file
paths

¨  Program B (consumer) scans a large and/or deep
directory tree generated by A to find the desired
files

¨  Program B computes with the obtained list of files as
input

New Computing Flow with Search
9

¨  Program A (producer) generates and tags （indexes)
files

¨  Program B (consumer) searches files under certain
conditions using the index

¨  Program B computes on search results

¨  More flexible (e.g., search attributes rather than file
paths)

¨  More efficient (do not require brute-forced directory
scanning).

Design

VSFS: A Searchable Distributed File System

¨ Defines a new file system form
¤  Deeply integrates a file-search service
¤  Searchable File System

n File search as first-class API
n Retrieve files using file-search queries

n Build filesystem namespace around file-search API

VSFS: A Searchable Distributed File System
(Cont’d)

¨ Defines a new file system form (Cont’d)
¤ Enables existing applications to use file

system like using a database!
n But no data model / code changes required!
n A new way to interact with file system

n  Enables a new computing model

Key Points

¨  Closely couples file search with computing
¤ Use file search to assist computing to reduce the input

data scale, thus speeding up computing

¨  A New File Query Language
¤ Compatible with existing file system namespace

¨  Real-Time Indexing
¤ Guarantee the consistency of file-search results

¨  Distributed Architecture

NFQL

¨  NFQL: Namespace-based File Query Language
¤ Use dynamic directories to represent queries

n VSFS fills search results in a dynamic directory
n Thus, scanning this dynamic directory à obtaining file-search

results

¤ POSIX-compatible
¤ Existing applications can use “readdir()” to search, e.g.,

n ls	
 /path/data/?attr1>100/	

14

NFQL Definition

⟨query⟩	
 :=	
 ⟨prefix⟩	
 ‘/?’	
 ⟨expression⟩	

[⟨topk⟩]	
 ⟨expression⟩	
 :=	
 [‘(’]	
 ⟨expression⟩	

[‘)’]	
 	

|	
 ⟨expression⟩	
 {(‘&’	
 |	
 ‘|’	
)	
 ⟨expression⟩}	
 	

|	
 ⟨range	
 query⟩	
 |	
 ⟨point	
 query⟩	
 |	
 ⟨multi	

dimensional	
 query⟩	
 ⟨range	
 query⟩	
 :=	
 ⟨index⟩	

(‘>’	
 |	
 ‘>=’	
 |	
 ‘<’	
 |	
 ‘<=’)	
 ⟨value⟩	

⟨point	
 query⟩	
 :=	
 ⟨index⟩	
 ‘=’	
 ⟨value⟩	

⟨multi	
 dimensional	
 query⟩	
 :=	

⟨index⟩‘[’⟨num⟩‘]’	
 (‘>’	
 |	
 ‘>=’	
 |	
 ‘<’	
 	

|	
 ‘<=’)	
 ⟨value⟩	

⟨topk⟩	
 :=	
 ‘#’	
 ⟨num⟩	
 [‘+’|‘-­‐’]	
 	

15

Example: “/foo/bar/?drug-A:energy> 10.5&weight< 16/”

Real-Time Indexing

¨  To support file search, VSFS integrates real-time &
“versatile” indexing support
¤ Capable of indexing data in real-time

n Guarantees the consistency between file-search results and
file contents.

¤ Provide flexibility for indexing data with arbitrary
attributes

16

Versatile Index

¨  A file-index is a versatile key-value structure
defined on a directory, defined as a 4-parameter
tuple (root, name, type, key)
¤ Root: the directory covered by this index
¤ Name: an arbitrary name to identify the index
¤ Type: the data structure of index (e.g., b-tree or hash)
¤ Key: the numeric type or string type of the key (e.g.,
int)

17

RAM-based Index Cluster

¨ To enable real-time indexing
¤ Use in-ram index cluster

n Keep all file-indices in RAM
n Periodically flushed to persistent storage

n Use a consistent hashing ring to scale a single
index to multiple nodes for large RAM space.

18

Distributed Architecture

¨ Master Server
¤ Metadata and namespace management

¨  Index Server
¤  In-memory cluster for file indices
¤ Periodlically flushed to persistent storage

¨  Pluggable Object Store
¤ Used for all persistent data

¨  Client: A library and A FUSE-based file system
¤ Dynamic creation of directories for file-search requests

19

VSFS Stack

Index Server

Index MgmtPluggable
Object Store

... ...
I/O

Analytics Applications

libvsfs FUSE HdfsCompFs*

Object Store Driver

VSFS RPC

...

Master Server
Namespace &

Metadata Mgmt ...
Server Mgmt*

I/O Index & Search

Index Placement*

client

20

Evaluation

Evaluation

¨  Run on a 20-node cluster, 1~16 as index servers
¨  Compared with SQL (MySQL), NoSQL (MongoDB)

and NewSQL (VoltDB, an in-memory SQL)
¤ Compare indexing performance

¨  Directly run existing applications on VSFS (FUSE)
¤ Use Lustre as object storage
¤ Demonstrate transparent speed up of existing

applications (Hive)

22

Evaluation (Indexing)
23

Evaluation (Hive)
•  Most interesting part of this work is VSFS’s

capability of
•  Transparently integrating w/ existing applications

w/o code modification
•  We use Hive, a SQL engine on top of Hadoop, as an

example.
•  Its code base is too complex to modify!
•  As most real-world applications are!

•  Run three modes, all are on the 20-node cluster
•  Machine learning dataset [TrionSort]
•  3 computing models: Hive, Hive_index and

Hive_vsfs

24

Query

¨  HiveQL query to answer:
¤ “find the minute in which the TrionSort cluster contains the

highest number of the high-latency events caused by an
interesting feature”

¤  SELECT	
 minute,	
 count(minute)	
 AS	
 mincount	
 FROM	

(SELECT	
 round(time	
 /	
 60)	
 AS	
 minute	
 FROM	
 trionsort	

WHERE	
 attr_name	
 =	
 ’Writer_5_runtime’	
 and	
 attr_value	

>	
 2000000)	
 t2	
 GROUP	
 BY	
 minute	
 ORDER	
 BY	
 mincount	
 DESC	

LIMIT	
 1;	
 	

Hive Execution Time
26

Hive

¨  Searching as a common facility in file system has
shown its performance advantages.

¨  Encourages the applications to take advantage of
the search functionality.

n Usually it only incurs minimal effort.

Conclusion

¨  VSFS demonstrates that searching a as file system
facility can significantly improve existing application
performance.
¤ Higher abstraction of manipulating data.

¨  NFQL offers backward-compatibility to the existing
applications.

¨  RAM-based index scheme and distributed
architecture

Q & A

