VSFS: A SEARCHABLE DISTRIBUTED
FILE SYSTEM

Lei Tian

- Introduction

Introduction

File systems have been widely used as HPC
storage infrastructures

Substitutes for databases

Better scalability

Larger volume

Higher parallel /O performance
Flexibility

No fixed data schemas

Support structured and unstructured data

Background

Original file system concepts are aged
Were proposed in 1970s

Assumption: Single CPU, Small RAM, Small working set,
Simple computing model, etc.

The assumption does not hold true now
Multicore processor

Large amount of RAM

Large working set

Complex computing model

Big Data Characteristics

Velocity and Variety

Database is insufficient
Fixed schema and low throughput
Not suitable for scientific dataset

Large-scale distributed file systems are the standard
solutions today (Hadoop, Ceph, Lustre, Panasas)

Volume — Management Challenge

Difficult to efficiently manage and organize enormous
number (e.g., 107) of files for various applications with
different access patterns.

File System Namespace

File system namespace becomes complex and
inefficient for managing large datasets

Root cause: file path is the only identity of data

Must be descriptive
Difficult to be distinguishable for billions of files

Difficult to locate target file from billions of files

Hierarchical namespace does not work well
with a huge amount of files.

File Search — Data Filtering

Addressing data management dilemma
Locate (search) files by “attributes” instead of “path”
Support high variety
Support large volume
Speed up big data computing

Enable new computing flow

Today’s Computing Flow

Program A (producer) writes data into files, with a
limited number of attributes embedded into file

paths

Program B (consumer) scans a large ~d/or deep

directory tree ae. ~<ired
Old School Data Filtering

files

Program B computes with. = obta. :d list ot Tiles as
input

New Computing Flow with Search

Program A (producer) generates and tags (indexes)
files

Program bywnimer) s« shes ™ indar ~artqin
conditions «_ New Data Filtering
Program B compu’ _~-on Chr (S

More flexible (e.g., search attributes rather than file
paths)

More efficient (do not require brute-forced directory
scanning).

VSFS: A Searchable Distributed File System

Defines a new file system form
Deeply integrates a file-search service

Searchable File System

File search as first-class API

Retrieve files using file-search queries

Build filesystem namespace around file-search API

VSFS: A Searchable Distributed File System
(Cont’d)

Defines a new file system form (Cont’d)

Enables existing applications to use file
system like using a database!
But no data model / code changes required!

A new way to interact with file system

Enables a new computing model

Key Points

Closely couples file search with computing

Use file search to assist computing to reduce the input
data scale, thus speeding up computing

A New File Query Language

Compatible with existing file system namespace
Real-Time Indexing

Guarantee the consistency of file-search results

Distributed Architecture

NFQL

NFQL: Namespace-based File Query Language
Use dynamic directories to represent queries

VSFS fills search results in a dynamic directory

Thus, scanning this dynamic directory = obtaining file-search
results

POSIX-compatible

Existing applications can use “readdir()” to search, e.g.,
ls /path/data/?attrl>100/

NFQL Definition

(query) := {prefix) /?’ {expression)
;<1.;Op]k>] (expression) := [“(’] {expression)

(expression) {(‘& | |’) (expression)}

(range query) | {(point query) | {multi
dimensional query) {range query, .= {index)
(2 | >=’ 7 ‘<’ | <=’) (value)

(point query) := {index) ‘=’ <{(value)

multi dimensional query> =
(index) [’ <{numy]’ (>’ ‘>=2 | <’

| “<=’) (value)
<tOpk’> e= CH) (numd [r_I_J c_)]

Example: “/foo/bar/2drug-A:energy> 10.5&weight< 16/

Real-Time Indexing

To support file search, VSFS integrates real-time &
“versatile” indexing support

Capable of indexing data in real-time

Guarantees the consistency between file-search results and
file contents.

Provide flexibility for indexing data with arbitrary
attributes

Versatile Index

A file-index is a versatile key-value structure
defined on a directory, defined as a 4-parameter

tuple (root, name, type, key)
Root: the directory covered by this index
Name: an arbitrary name to identify the index
Type: the data structure of index (e.g., b-tree or hash)

Key: the numeric type or string type of the key (e.g.,
int)

RAM-based Index Cluster

To enable real-time indexing

Use in-ram index cluster
Keep all file-indices in RAM

Periodically flushed to persistent storage

Use a consistent hashing ring to scale a single
index to multiple nodes for large RAM space.

Distributed Architecture

Master Server

Metadata and namespace management

Index Server
In-memory cluster for file indices

Periodlically flushed to persistent storage

Pluggable Obiject Store

Used for all persistent data

Client: A library and A FUSE-based file system

Dynamic creation of directories for file-search requests

VSFS Stack

Analytics Applications Master Server

I/O& /ndex & Search Namespace &
Metadata Mgmt

libvsfs | FUSE |HdfsCompFs*

Server Mgmt*

VSFS RPC Index Placement*

Object Store Driver

client /0

Index Server

Pluggable

Object Store Index Mgmt

- Evaluation

Evaluation

Run on a 20-node cluster, 1~16 as index servers
Compared with SQL (MySQL), NoSQL (MongoDB)
and NewSQL (VoltDB, an in-memory SQL)

Compare indexing performance

Directly run existing applications on VSFS (FUSE)
Use Lustre as object storage

Demonstrate transparent speed up of existing
applications (Hive)

Evaluation (Indexing)

4500K

4000K

3500K

3000K

2500K

2000K

Records per Second

1500K

1000K

500K

FiIe—Indexjng Throughput‘

~— Vysfs
~—= hbase
o—e mysql(s)

v—v mongodb

0

O

mysql(p)

voltdb

10000K

100K

Logarithm-scaled Throughtput

1000K /

10K ®

0K .
1

—a

Number of Servers

oo @

Evaluation (Hive)

* Most interesting part of this work is VSFS’s
capability of
* Transparently integrating w/ existing applications
w /o code modification
* We use Hive, a SQL engine on top of Hadoop, as an
example.
* Its code base is too complex to modify!
* As most real-world applications are!
* Run three modes, all are on the 20-node cluster
* Machine learning dataset [TrionSort]
* 3 computing models: Hive, Hive_index and
Hive vsfs

Query

HiveQL query to answer:

“find the minute in which the TrionSort cluster contains the

highest number of the high-latency events caused by an
interesting feature”

SELECT minute, count(minute) AS mincount FROM
(SELECT round(time / 60) AS minute FROM trionsort
WHERE attr name = ’Writer_ 5 runtime’ and attr value

> 2000000) t2 GROUP BY minute ORDER BY mincount DESC
LIMIT 1,

Hive Execution Time

30000 Hive MapRecuce Cumulative CPU Time (s)

1 hive [ZJ hive_index [hive_vsfs

25000

20000

15000

10000~

600+

500
400

300

200

100

- RS-

1000000 1500000 2000000
The attr_value in the HiveQL query.

Hive

Searching as a common facility in file system has
shown its performance advantages.

Encourages the applications to take advantage of
the search functionality.

Usually it only incurs minimal effort.

Conclusion

VSFS demonstrates that searching a as file system
facility can significantly improve existing application
performance.

Higher abstraction of manipulating data.

NFQL offers backward-compatibility to the existing
applications.

RAM-based index scheme and distributed
architecture

